175 research outputs found

    Statistical dynamo theory: Mode excitation

    Full text link
    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B = sum_k a^k(t) b^k(r). We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a^k(t) is governed by a stochastic differential equation from which we infer their averages , autocorrelation functions <a^k(t) a^{k*}(t+tau)>, and an equation for the cross correlations . The eigenfunctions of the dynamo equation (with eigenvalues lambda_k) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Im(lambda_k) and -1/(Re lambda_k), respectively. The relative r.m.s. excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for / in case the fundamental mode b^0 has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that / ~ 1/N where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or FOSA) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Re(lambda_k) < 0.Comment: 14 pages, 2 figures. Accepted for publication in Physical Review

    Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterisation, and trends

    Get PDF
    Nitrogen dioxide (NO2) and formaldehyde (HCHO) column data from satellite instruments are used for air quality and climate studies. Both NO2 and HCHO have been identified as precursors to the ozone (O3) and aerosol essential climate variables, and it is essential to quantify and characterise their uncertainties. Here we present an intercomparison of NO2 and HCHO slant column density (SCD) retrievals from four different research groups (BIRA-IASB, IUP Bremen, and KNMI as part of the Quality Assurance for Essential Climate Variables (QA4ECV) project consortium, and NASA) and from the OMI and GOME-2A instruments. Our evaluation is motivated by recent improvements in differential optical absorption spectroscopy (DOAS) fitting techniques and by the desire to provide a fully traceable uncertainty budget for the climate data record generated within QA4ECV. The improved NO2 and HCHO SCD values are in close agreement but with substantial differences in the reported uncertainties between groups and instruments. To check the DOAS uncertainties, we use an independent estimate based on the spatial variability of the SCDs within a remote region. For NO2, we find the smallest uncertainties from the new QA4ECV retrieval (0.8  ×  1015 molec. cm−2 for both instruments over their mission lifetimes). Relative to earlier approaches, the QA4ECV NO2 retrieval shows better agreement between DOAS and statistical uncertainty estimates, suggesting that the improved QA4ECV NO2 retrieval has reduced but not altogether eliminated systematic errors in the fitting approach. For HCHO, we reach similar conclusions (QA4ECV uncertainties of 8–12  ×  1015 molec. cm−2), but the closeness between the DOAS and statistical uncertainty estimates suggests that HCHO uncertainties are indeed dominated by random noise from the satellite's level 1 data. We find that SCD uncertainties are smallest for high top-of-atmosphere reflectance levels with high measurement signal-to-noise ratios. From 2005 to 2015, OMI NO2 SCD uncertainties increase by 1–2 % year−1, which is related to detector degradation and stripes, but OMI HCHO SCD uncertainties are remarkably stable (increase  &lt;  1 % year−1) and this is related to the use of Earth radiance reference spectra which reduces stripes. For GOME-2A, NO2 and HCHO SCD uncertainties increased by 7–9 and 11–15 % year−1 respectively up until September 2009, when heating of the instrument markedly reduced further throughput loss, stabilising the degradation of SCD uncertainty to  &lt;  3 % year−1 for 2009–2015. Our work suggests that the NO2 SCD uncertainty largely consists of a random component ( ∼  65 % of the total uncertainty) as a result of the propagation of measurement noise but also of a substantial systematic component ( ∼  35 % of the total uncertainty) mainly from stripe effects. Averaging over multiple pixels in space and/or time can significantly reduce the SCD uncertainties. This suggests that trend detection in OMI, GOME-2 NO2, and HCHO time series is not limited by the spectral fitting but rather by the adequacy of assumptions on the atmospheric state in the later air mass factor (AMF) calculation step.</p

    Improving algorithms and uncertainty estimates for satellite NO<sub>2</sub> retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project

    Get PDF
    Global observations of tropospheric nitrogen dioxide (NO2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO2 columns and their associated uncertainties can provide crucial information on how the emissions and concentrations of nitrogen oxides evolve over time. Here we describe the development of a new, community best-practice NO2 retrieval algorithm based on a synthesis of existing approaches. Detailed comparisons of these approaches led us to implement an enhanced spectral fitting method for NO2, a 1°&thinsp; × &thinsp;1° TM5-MP data assimilation scheme to estimate the stratospheric background and improve air mass factor calculations. Guided by the needs expressed by data users, producers, and WMO GCOS guidelines, we incorporated detailed per-pixel uncertainty information in the data product, along with easily traceable information on the relevant quality aspects of the retrieval. We applied the improved QA4ECV NO2 algorithm to the most current level-1 data sets to produce a complete 22-year data record that includes GOME (1995&ndash;2003), SCIAMACHY (2002&ndash;2012), GOME-2(A) (2007 onwards) and OMI (2004 onwards). The QA4ECV NO2 spectral fitting recommendations and TM5-MP stratospheric column and air mass factor approach are currently also applied to S5P-TROPOMI. The uncertainties in the QA4ECV tropospheric NO2 columns amount to typically 40&thinsp;% over polluted scenes. The first validation results of the QA4ECV OMI NO2 columns and their uncertainties over Tai'an, China, in June 2006 suggest a small bias (&minus;2&thinsp;%) and better precision than suggested by uncertainty propagation. We conclude that our improved QA4ECV NO2 long-term data record is providing valuable information to quantitatively constrain emissions, deposition, and trends in nitrogen oxides on a global scale.</p

    Dutch Oncology COVID-19 consortium:Outcome of COVID-19 in patients with cancer in a nationwide cohort study

    Get PDF
    Aim of the study: Patients with cancer might have an increased risk for severe outcome of coronavirus disease 2019 (COVID-19). To identify risk factors associated with a worse outcome of COVID-19, a nationwide registry was developed for patients with cancer and COVID-19. Methods: This observational cohort study has been designed as a quality of care registry and is executed by the Dutch Oncology COVID-19 Consortium (DOCC), a nationwide collaboration of oncology physicians in the Netherlands. A questionnaire has been developed to collect pseudonymised patient data on patients' characteristics, cancer diagnosis and treatment. All patients with COVID-19 and a cancer diagnosis or treatment in the past 5 years are eligible. Results: Between March 27th and May 4th, 442 patients were registered. For this first analysis, 351 patients were included of whom 114 patients died. In multivariable analyses, age ≥65 years (p < 0.001), male gender (p = 0.035), prior or other malignancy (p = 0.045) and active diagnosis of haematological malignancy (p = 0.046) or lung cancer (p = 0.003) were independent risk factors for a fatal outcome of COVID-19. In a subgroup analysis of patients with active malignancy, the risk for a fatal outcome was mainly determined by tumour type (haematological malignancy or lung cancer) and age (≥65 years). Conclusion: The findings in this registry indicate that patients with a haematological malignancy or lung cancer have an increased risk of a worse outcome of COVID-19. During the ongoing COVID-19 pandemic, these vulnerable patients should avoid exposure to severe acute respiratory syndrome coronavirus 2, whereas treatment adjustments and prioritising vaccination, when available, should also be considered

    Prognostic Implications of Lateral Lymph Nodes in Rectal Cancer:A Population-Based Cross-sectional Study with Standardized Radiological Evaluation after Dedicated Training

    Get PDF
    BACKGROUND: There is an ongoing discussion regarding the prognostic implications of the presence, short-axis diameter, and location of lateral lymph nodes. OBJECTIVE: To analyze lateral lymph node characteristics, the role of downsizing on restaging MRI, and associated local recurrence rates for patients with cT3-4 rectal cancer after MRI re-review and training. DESIGN: Retrospective population-based cross-sectional study. SETTINGS: This collaborative project was led by local investigators from surgery and radiology departments in 60 Dutch hospitals. PATIENTS: A total of 3057 patients underwent rectal cancer surgery in 2016: 1109 had a cT3-4 tumor located ≤8 cm from the anorectal junction, of whom 891 received neoadjuvant therapy. MAIN OUTCOME MEASURES: Local recurrence and (ipsi) lateral local recurrence rates. RESULTS: Re-review identified 314 patients (35%) with visible lateral lymph nodes. Of these, 30 patients had either only long-stretched obturator (n = 13) or external iliac (n = 17) nodes, and both did not lead to any lateral local recurrences. The presence of internal iliac/obturator lateral lymph nodes (n = 284) resulted in 4-year local recurrence and lateral local recurrence rates of 16.4% and 8.8%, respectively. Enlarged (≥7 mm) lateral lymph nodes (n = 122) resulted in higher 4-year local recurrence (20.8%, 13.1%, 0%; p &lt;.001) and lateral local recurrence (14.7%, 4.4%, 0%; p &lt; 0.001) rates compared to smaller and no lateral lymph nodes, respectively. Visible lateral lymph nodes (HR 1.8 [1.1-2.8]) and enlarged lateral lymph nodes (HR 1.9 [1.1-3.5]) were independently associated with local recurrence in multivariable analysis. Enlarged lateral lymph nodes with malignant features had higher 4-year lateral local recurrence rates of 17.0%. Downsizing had no impact on lateral local recurrence rates. Enlarged lateral lymph nodes were found to be associated with higher univariate 4-year distant metastasis rates (36.4% vs 24.4%; p = 0.021), but this was not significant in multivariable analyses (HR 1.3 [0.9-1.]) and did not worsen overall survival. LIMITATIONS: This study was limited by the retrospective design and total number of patients with lateral lymph nodes. CONCLUSIONS: The risk of lateral local recurrence due to (enlarged) lateral lymph nodes was confirmed, but without the prognostic impact of downsizing after neoadjuvant therapy. These results point toward the incorporation of primary lateral lymph node size into treatment planning. See Video Abstract.</p

    The Promise and Challenge of Therapeutic MicroRNA Silencing in Diabetes and Metabolic Diseases

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding, RNA molecules that regulate gene expression. They have a long evolutionary history and are found in plants, viruses, and animals. Although initially discovered in 1993 in Caenorhabditis elegans, they were not appreciated as widespread and abundant gene regulators until the early 2000s. Studies in the last decade have found that miRNAs confer phenotypic robustness in the face of environmental perturbation, may serve as diagnostic and prognostic indicators of disease, underlie the pathobiology of a wide array of complex disorders, and represent compelling therapeutic targets. Pre-clinical studies in animal models have demonstrated that pharmacologic manipulation of miRNAs, mostly in the liver, can modulate metabolic phenotypes and even reverse the course of insulin resistance and diabetes. There is cautious optimism in the field about miRNA-based therapies for diabetes, several of which are already in various stages of clinical trials. This review will highlight both the promise and the most pressing challenges of therapeutic miRNA silencing in diabetes and related conditions

    Comparison between Spanish young and elderly people evaluated using Rivermead Behavioural Memory Test

    Get PDF
    The first objective of this work was to compare scores obtained in the daily memory function between young and elderly people, and to check whether there are differences between the groups for each of the profile scores obtained in the memory test. A second aim of this paper is to study the relationship between everyday memory and age, while controlling for gender and educational level. The total and profile scores obtained in the Rivermead Behavioural Memory Test were compared in a sample of 60 young and 120 elderly people from Valencia (Spain). Results showed significant differences between the two groups: those between 18 and 30 years obtained a higher average than those over 65. Once the group comparison was controlled for gender and educational level, the statistical effect of age group disappeared. The non-significant effect of group can not be explained by the introduction of gender, because both its main effect and the interaction were not statistically significant. However, educational level had a statistically significant effect which may explain the non-significant effect of group in this new analysis. The main conclusion is the need to carefully control for educational level in all studies related with everyday memory and ageing, as the differences found could be due to generational differences more than to biological deterioratio

    Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE) have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments.</p> <p>Results</p> <p>We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification.</p> <p>Conclusion</p> <p>We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability analysis. Moreover, the availability of fully automated microfluidic platforms explicitly developed for the task of biochemical model identification will hopefully reduce the effects of the 'data rich-data poor' paradox in Systems Biology.</p

    Tactual perception: a review of experimental variables and procedures

    Get PDF
    This paper reviews literature on tactual perception. Throughout this review we will highlight some of the most relevant variables in touch literature: interaction between touch and other senses; type of stimuli, from abstract stimuli such as vibrations, to two- and three-dimensional stimuli, also considering concrete stimuli such as the relation between familiar and unfamiliar stimuli or the haptic perception of faces; type of participants, separating studies with blind participants, studies with children and adults, and an analysis of sex differences in performance; and finally, type of tactile exploration, considering conditions of active and passive touch, the relevance of movement in touch and the relation between exploration and time. This review intends to present an organised overview of the main variables in touch experiments, attending to the main findings described in literature, to guide the design of future works on tactual perception and memory.This work was funded by the Portuguese “Foundation for Science and Technology” through PhD scholarship SFRH/BD/35918/2007
    corecore