95 research outputs found

    Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes

    Get PDF
    Objective: To investigate the inhibitory effects and the regulatory mechanisms of histone deacetylase (HDAC) inhibitors on mechanical stress-induced gene expression of runt-related transcription factor (RUNX)-2 and a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 in human chondrocytes. Methods: Human chondrocytes were seeded in stretch chambers at a concentration of 5 x 10(4) cells/chamber. Cells were pre-incubated with or without HDAC inhibitors (MS-275 or trichostatin A; TSA) for 12 h, followed by uniaxial cyclic tensile strain (CTS) (0.5 Hz, 10% elongation), which was applied for 30 min using the ST-140-10 system (STREX, Osaka, Japan). Total RNA was extracted and the expression of RUNX-2, ADAMTS-5, matrix metalloproteinase (MMP)-3, and MMP-13 at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The activation of diverse mitogen-activated protein kinase (MAPK) pathways with or without HDAC inhibitors during CTS was examined by western blotting. Results: HDAC inhibitors (TSA: 10 nM, MS-275: 100 nM) suppressed CTS-induced expression of RUNX-2, ADAMTS-5, and MMP-3 at both the mRNA and protein levels within 1 h. CTS-induced activation of p38 MAPK (p38), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (INK) MAPKs was downregulated by both HDAC inhibitors. Conclusion: The CTS-induced expression of RUNX-2 and ADAMTS-5 was suppressed by HDAC inhibitors via the inhibition of the MAPK pathway activation in human chondrocytes. The results of the current study suggested a novel therapeutic role for HDAC inhibitors against degenerative joint disease such as osteoarthritis

    Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways

    Get PDF
    Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS

    MicroRNA-145 Regulates Chondrogenic Differentiation of Mesenchymal Stem Cells by Targeting Sox9

    Get PDF
    Chondrogenic differentiation of mesenchymal stem cells (MSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process still remain to be defined. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. To investigate the mechanisms for miRNAs-mediated regulation of chondrogenic differentiation, we identified that miR-145 was decreased during transforming growth factor beta 3 (TGF-β3)-induced chondrogenic differentiation of murine MSCs. Subsequently, dual-luciferase reporter gene assay data demonstrated that miR-145 targets a putative binding site in the 3′-UTR of SRY-related high mobility group-Box gene 9 (Sox9) gene, the key transcription factor for chondrogenesis. In addition, over-expression of miR-145 decreased expression of Sox9 only at protein levels and miR-145 inhibition significantly elevated Sox9 protein levels. Furthermore, over-expression of miR-145 decreased mRNA levels for three chondrogenic marker genes, type II collagen (Col2a1), aggrecan (Agc1), cartilage oligomeric matrix protein (COMP), type IX collagen (Col9a2) and type XI collagen (Col11a1) in C3H10T1/2 cells induced by TGF-β3, whereas anti-miR-145 inhibitor increased the expression of these chondrogenic marker genes. Thus, our studies demonstrated that miR-145 is a key negative regulator of chondrogenic differentiation by directly targeting Sox9 at early stage of chondrogenic differentiation

    Defining the Earliest Transcriptional Steps of Chondrogenic Progenitor Specification during the Formation of the Digits in the Embryonic Limb

    Get PDF
    The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo

    Differentiation-Dependent Secretion of Proangiogenic Factors by Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF165/121 antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair

    Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human anterior cruciate ligament (hACL) and medial collateral ligament (hMCL) of the knee joint are frequently injured, especially in athletic settings. It has been known that, while injuries to the MCL typically heal with conservative treatment, ACL injuries usually do not heal. As adult stem cells repair injured tissues through proliferation and differentiation, we hypothesized that the hACL and hMCL contain stem cells exhibiting unique properties that could be responsible for the differential healing capacity of the two ligaments.</p> <p>Methods</p> <p>To test the above hypothesis, we derived ligament stem cells from normal hACL and hMCL samples from the same adult donors using tissue culture techniques and characterized their properties using immunocytochemistry, RT-PCR, and flow cytometry.</p> <p>Results</p> <p>We found that both hACL stem cells (hACL-SCs) and hMCL stem cells (hMCL-SCs) formed colonies in culture and expressed stem cell markers nucleostemin and stage-specific embryonic antigen-4 (SSEA-4). Moreover, both hACL-SCs and hMCL-SCs expressed CD surface markers for mesenchymal stem cells, including CD44 and CD90, but not those markers for vascular cells, CD31, CD34, CD45, and CD146. However, hACL-SCs differed from hMCL-SCs in that the size and number of hACL-SC colonies in culture were much smaller and grew more slowly than hMCL-SC colonies. Moreover, fewer hACL-SCs in cell colonies expressed stem cell markers STRO-1 and octamer-binding transcription factor-4 (Oct-4) than hMCL-SCs. Finally, hACL-SCs had less multi-differentiation potential than hMCL-SCs, evidenced by differing extents of adipogenesis, chondrogenesis, and osteogenesis in the respective induction media.</p> <p>Conclusions</p> <p>This study shows for the first time that hACL-SCs are intrinsically different from hMCL-SCs. We suggest that the differences in their properties contribute to the known disparity in healing capabilities between the two ligaments.</p
    corecore