44 research outputs found

    Detailed studies of the subpicosecond kinetics in the primary electron transfer of reaction centers of Rhodopseudomonas viridis

    Get PDF
    The primary, light-induced charge separation in reaction centers of Rhodopseudomonas viridis is investigated with femtosecond time resolution. The absorption changes after direct excitation of the primary donor P at 955 nm are investigated in the time range from 100 fs to 600 ps. The experimental data, taken at various probing wavelengths, reveal one subpicosecond and two picosecond time constants: 0.65 ± 0.2 ps, 3.5 ± 0.4 ps, and 200 ± 20 ps. The previously undetected 0.65 ps kinetics can be observed clearly in the spectral range of the Qx and Qy transitions of the monomeric bacteriochlorophylls. The experimental data support the idea that the accessory bacteriochlorophyll B A participates in the electron-transfer process. Reference

    Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides

    Get PDF
    Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer to increase from 3.5 f 0.4 ps to 16 f 6 ps while the exchange to leucine increased the time constant even more to 22 f 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary electron transfer

    Predicting the soil moisture conditions of Irish grasslands

    Get PDF
    peer-reviewedSoil moisture conditions are an important interface between agriculture and the environment, as they impact on the length of the grazing season, grass growth rate and nutrient uptake, and the loss of nutrients to the wider environment. Moisture conditions are conveniently quantified by the soil moisture deficit (SMD) but diverging methods for deriving SMD have been applied in Ireland to date. A simple hybrid model for computing SMD is presented, which accounts for differences in drainage regimes between soil types, and is calibrated for contrasting soil types in Ireland. This hybrid model accurately predicted the temporal patterns of SMD on well-drained and poorlydrained soils. Three soil drainage classes were defined, which satisfactorily describe the differences in drainage between soils.National Development Plan 2000–200

    The Role of Fire in the Coevolution of Soils and Temperate Forests

    No full text
    Climate drives the coevolution of vegetation and the soil that supports it. Wildfire dramatically affects many key eco‐hydro‐geomorphic processes, but its potential role in coevolution of soil‐forest systems has been largely overlooked. The steep landscapes of southeastern Australia provide an excellent natural laboratory to study the role of fire in the coevolution of soil and forests, as they are characterized by temperate forest types, fire frequencies, and soil depths that vary systematically with aridity. The aims of this study were (i) to test the hypothesis that in Southeastern Australia, fire‐related processes are critical to explain the variations in coevolved soil‐forest system states across an aridity gradient and (ii) to identify the key processes and (iii) feedbacks involved. To achieve these aims, we developed a numerical model that simulates the coevolution of soil‐forest systems which employ eco‐hydro‐geomorphic processes that are typical of the flammable forests of southeastern Australia. A stepwise model evaluation, using measurements and published data, confirms the robustness of the model to simulate eco‐hydro‐geomorphic processes across the aridity gradient. Simulations that included fire replicated patterns of observed soil depth and forest cover across an aridity gradient, supporting our hypothesis. The contribution of fire to coevolution increased in magnitude with aridity, mainly due to the higher fire frequency and lower post‐fire infiltration capacity, increasing the rates of fire‐related surface runoff and erosion. Our results show that critical feedbacks between soil depth, vegetation, and fire frequency dictate the trajectory and pace of the coevolution of flammable temperate forests and soils
    corecore