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FEMTOSECOND SPECTROSCOPY OF THE PRIMARY ELECTRON 
TRANSFER IN PHOTOSYNTHETIC REACTION CENTERS 

Wolfgang Zinth 1 , Peter Hamm1, Karl Dressler2, Ulrich Finkele2, 

Christoph Lauterwasser1 

Institut für Medizinische Optik der Universität München 

Barbarastr 16, 8000 München 40, Germany 
2Physik Department E l 1 der Technischen Universität München 
James-Franck-Straße, 8046 Garching, Germany 

INTRODUCTION 

In the primary photosynthetic process of bacterial reaction centers (RC) light energy is 

stored by a rapid electron transfer (ET). The structural arrangement of the reaction centers 

with the six chromophores kept in two symmetry related branches A and Β predetermines the 

ET path. The branches begin at two strongly interacting bacteriochlorophyll molecules for

ming the special pair Ρ which acts as a primary electron donor. Subsequently each branch 

contains a monomeric bacteriochlorophyll (BChl) molecule BA and Ββ, a bacteriopheophytin 

(BPhe) ( H A , Ηβ) and a quinone (QA, QB) [ L 2]. Spectroscopy on reaction centers has 

revealed that the two pigment branches are spectroscopically non-equivalent and that electron 

transfer uses predominantly the A branch. It is generally accepted that the ET starts after exci

tation by light from the special pair Ρ and that the primary reaction is finished by the ET from 

the bacteriopheophytin H A to the quinone QA which occurs with a time constant of 200 ps. 

However, there exist different opinions on the first part of the ET reaction: In the super-

exchange ET model the electron is transferred directly from the special pair Ρ to the bacterio

pheophytin H A on the A branch. The monomeric bacteriochlorophyll is only used as a virtual 
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electron carrier [3-7]. In the stepwise ET model the monomeric bacteriochlorophyll Β A is a 

real electron carrier and the electron undergoes two reaction steps before it reaches the 

bacteriopheophytin. This model is supported by recent experimental results on RC from 

Rhodobacter (Rb.) sphaeroides which indicate that the electron transfer to Β A occurs in 

approximately 3.5 ps while the second transfer step to the bacteriopheophytin HA should be 

faster taking less than one picosecond (0.9 ps) [8, 9]. 

In this paper we give additional information on the primary ET reaction obtained by 

transient absorption and emission experiments. In a detailed discussion we will use these 

results in order to obtain new insight into the nature of the primary electron transfer. 

MATERIAL AND METHODS 

RC from Rps. viridis and Rb. sphaeroides R26.1 were prepared as described in Ref. 8, 
10. Room temperature experiments were performed in cuvettes with a pathlength of 1 mm 
under stirring. Measurements on low temperature RC were performed on quinone depleted 
RC from Rb. sphaeroides strain R26.1 desolved in glycerol [12]. The time resolved absorp
tion experiments used the excite-and probe technique. Details of the experimental set-up are 
described elsewhere [8, 10]. The main features of the experiments are: Excitation beam: short 
pulses of a duration of about 200 fs at a repetition rate of 10 Hz, excitation wavelength 
955 nm (Rps. viridis) and 875 nm (Rb. sphaeroides), less than 10 % of the RC are excited 
per laser pulse. Probing pulses: 5-10 nm wide portion of a femtosecond white-light-
continuum selected by a dispersion compensated spectrometer in front of the sample, parallel 
polarisations of exciting and probing pulses, probe intensities at least 30 times smaller than 
excitation intensities. The width of the instrumental response function was between 250 and 
350 fs. 

The time-resolved emission experiment was performed with the fluorescence up-convcr-
sion technique (For details sec Ref. 11V Excitation parameters were: Xoxr = 865 nm 

(Rb. sphaeroides), t p ~ 200 fs, less than 10 % of the RC absorb a photon. Up-conversion 
process: collinear type II phase matching in a 1mm BBO crystal; up-converted fluorescence 
emission 910-930 nm; width of the instrumental response function ~ 400 fs. 

In the standard nonadiabatic description of transient absorption spectroscopy one treats 

the molecular system as a set of electronic states where the vibrational levels of each state are 

in thermal equilibrium at some temperature T. As a consequence these states have well de

fined absorption properties. Transitions between the states are governed by reaction rates. 

The absorbance change is a sum of exponentials convolved with the instrumental response 

function. The number of exponentials is equal to the number of intermediate states populated 

during the reaction. The mathematical description of the absorbance change in the non-adia-

batic theory is described in detail in Ref. 9. It has been shown in the literature [5] that non

adiabatic theory is justified at least at room temperature. As a consequence we analyse the 
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Figure 1. Transient absorption data from RC of Rps. viridis in the gain region (λ probe = 1050nm) 

room temperature data by exponential functions. Due to the lack of a more reasonable theory 

we apply the same procedure - as a first order approximation - to the low-temperature data. 

RESULTS AND DISCUSSIONS 

Transient Absorption Spectroscopy of Reaction Centers of Rps. Viridis 

The general features of transient absorption spectroscopy on Rps. viridis are similar to 
those found previously for Rb. sphaeroides [8, 9]. The decay of the excited electronic state 
P* of the special pair is seen at 1050 nm (Fig. 1). Here stimulated emission (gain) occurs 
vv/iic/i ticcays at /atei JcUy times vvitn a time constant of appioxiinate/y 3.5 ps. At eaiiy times 

the absorption changes more rapidly suggesting the existence of a faster kinetic component 
(See systematic deviations of data points from the model curve). This component is evident at 
measurements in the Q x and Q y absorption bands of the monomeric bacteriochlorophylls 
(Fig. 2a and b). Here a fast process with a time constant of 0.65 ± 0.3 ps occurs within a 
narrow spectral range. The other components observed have time constants of 3.5 ps and 
200 ps. 

The observation of three kinetic components with two time constants below 5 ps paral
lels the findings for Rb. sphaeroides. The experimental data strongly support the idea that the 
primary ET reactions of Rb. sphaeroides and Rps. viridis proceed via similar reaction 
models. While the qualitative agreement of the experimental results is striking it should be re
called that the subpicosecond kinetic component is somewhat faster in RC of Rps. viridis 
than in RC of Rb. sphaeroides. 
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Figure 2. Transient absorption data (points) for RC from Rps. viridis recorded in the Qx (left) and Qy (right) 

absorption band of the accessory bacteriochlorophyll. The solid curves are calculated for a four component 

(0.65 ps, 3.5 ps, 200 ps, «>) the broken curve for a three component model (3.5 ps, 200 ps, co). 

Reaction Centers at Low Temperatures 

A first set of experiments investigated the decay of the excited state P* via stimulated 
emission. At the low temperature of 25 Κ the signal points were close to a monoexponential 
model function with a time constant of xj = 1.4 ± 0.3 ps. This transient was followed up to 
room temperature where the value of λ 5 ps was reached as discussed above. The data are in 

agreement with previous experimental studies [13-15]. Most interesting is the investigation of 
the temperature dependence of the fast kinetic component [12]. To this end we studied the 
transient absorption changes at probing wavelengths around 795 nm in the spectral range of 
the Q y band of the bacteriochlorophyll at 25 K. The transient absorption data yielded the 
following results: One finds a complex time dependence of the absorbance change which 
excludes the possibility that there is only one, namely the 1.4 ps kinetic component. There 
exists an additional faster kinetic process with a time constant of 0.3 ± 0.15 ps. In addition 
there appear some weak oscillations similar to those reported recently by Voss et al. [15]. In a 
set of measurements we have recorded the temperature dependence of the absorbance change 
in a broader spectral range. We observe qualitatively similar transient absorption features at 
all temperatures. 
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Reaction Centers with Exchanged Bacteriochlorophyll a 

In another set of experiments RC of Rb. sphaeroides were studied where the 

bacteriochlorophyll a molecule at the accessory position BA and Bß were exchanged by 

[3-vinyl]-132-OH-bacteriochlorophyll a molecules [16]. The modification due to the 3-vinyl 

group is expected to change the redox potential of the BChl and as a consequence the energy 

of the radical pair state ΡΉΑ~· This change should have pronounced consequences on the ET 

when the accessory BChl BA is involved as an intermediate electron carrier. Indeed, one 

finds a strong change of the transient absorption data. The experimental data indicate that the 

RC's containing [3-vinyl]-132-OH-BChl a have a decay time of the excited electronic state P* 

of the special pair of 32 ps. On the other hand a long-lasting bleaching of the special pair 

absorption band shows that the exchange leads to RC's which are still photochemically 

active. In the [3-vinyl]- 132-OH-BChl a containing RC's the 0.9 ps component is not 

visible. However, there are some indications that a related process exists which would have a 

longer time constant in the 5 ps domain. 

REACTION MODELS 

The structural arrangement of the RC supports the idea that the electron is transferred in 

several steps from the special pair Ρ via BA, HA to QA (Model A of Fig. 3). The transient ex

perimental data presented here do not give any contradiction against this reaction model. Far 

from it the analysis of the transient data using reaction model A yields exactly the spectra of 

the intermediates and would expect from in vitro measurements of the chromophores [17, 

18]. This finding can be illustrated by Fig. 1. In this experiment the transient absorption at 

1050 nm in the gain region was investigated. Surprisingly there was some faster initial decay 

of the signal (which was not seen in the short wavelength side of the gain). Data analysis 

using reaction model A indicates that the second intermediate 12 must have an increased ab

sorption in this spectral range. This observation fits well to the interpretation of I2 being the 

radical pair state P +BA" as spectra of the bacteriochlorophyll b anion show a distinct absorp

tion band around 1050 nm [17, 18]. 

However, most transient absorption data also fit to the two models B\ and Β2 where the 

subpicosecond reaction is assumed to precede the 3.5 ps process: Here the intermediate I2 is 

formed very fast. It decays with 3.5 ps in a second step. Calculating the absorption spectrum 

of I 2 for model B i and B2 leads to the following characteristics: I 2 is similar to the electroni

cally excited state P*. It also exhibits gain; thus it should be another excited electronic state of 

the special pair - we call it Ρ**. Its further absorption properties differ only slightly from 

those of P*. The most straightforward interpretation of P** would be that P** is a vibra-

tionally relaxed P* state (Model Bi) . Here the electron will be transferred directly in a super-
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Figure 3. Schematic representation of possible reaction models for the primary photosynthetic ET. The time 

constants shown in the Figure represent the values for Rb. sphaeroides at room temperature. 

exchange step from the special pair Ρ to HA- Somewhat different is the molecular inter

pretation for Model B2, which is related to considerations given by H. Kuhn [19]. Model B2 

is based on the existence of an intermediate state 12 = P** where the electron is delocalized 

over the special pair, the accessory BChl and the BPh. According to the experimental obser

vations state I 2 = P** must be populated in the first 0.9 ps process. The slower 3.5 ps pro

cess is thought to be related to the trapping of the electron at the bacteriopheophytin HA- Due 

to the derealization of the electron in state P** there is no need for a long- range super-

exchange ET in Model B2. 

In model C the energy of state P+BA" is the relevant parameter. Model C represents a 

combination of the stepwise ET (Model A) and the superexchange Model Bi according to 

Bixon et al. [20, 5]. For an energy of state P + BA" close to the energy of P* both reaction 

pathways may occur in parallel. As I 2 must have the spectral properties of a radical pair state 

P +BA" one obtains restrictions for the model parameters. We find a limit for the maximum 

yield of the direct superexchange transfer at room temperature of 10 %; the energy of state 

P + BA" is about 200 cm"1 (Rps. viridis) below that of P*. 

The experimental data obtained for RC at low temperatures and with exchanged 

bacteriochlorophylls allow to restrict furtheron the number of reaction models: The discussion 

of the two reaction Models B i and B2 requires a subtile consideration of the experimental 

observations: In the pure superexchange picture of Model B i the fast kinetic component is 
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related to vibrational relaxation in the excited state. From the theory of vibrational relaxation 

of polyatomic molecules and from a number of experiments (e. g. on amino acids [21]) it is 

well known that vibrational relaxation slows down at low temperatures. However, the fast 

reaction becomes considerably faster at low temperatures. This observation is incompatible 

with the interpretation of Model B i . Additional arguments against vibrational relaxation come 

from experiments on modified RCs; e. g. on RCs where the monomeric BChl are exchanged 

by [3 vinyl]-13 2 OH-BChl and where the 3.5 ps time constant is increased to 32 ps. The 

molecular substitution leaves the special pair unaffected; as a consequence a P* vibrational 

process according to Model Bi should be present and observable. However, the experiments 

do not exhibit the related 0.9 ps transient component. 

The observed transient absorption data alone are not able to eliminate Model B2. 

Additional information comes from hole-burning experiments (Johnson et al., [22]). In these 

experiments performed at very low temperatures narrow zero phonon holes were observed 

with a spectral width corresponding to a time constant of approximately 1 ps. From these data 

one can deduce that the first reaction process starting from the lowest vibrational level of P* 

is the slower, the 1.4 ps process. The faster 0.3 ps component must be (as it is not related 

with vibrational relaxation, see above) the second process in the reaction scheme. Since the 

important features of the reaction processes do not change strongly with temperature one may 

discard Model B2 at room temperature as well. 

The stepwise reaction Model A with the radical pair state P4"BA' as a real intermediate 

with only a small contribution of a superexchange reaction is compatible with the extensive 

time resolved absorption data available today. At room temperature the stepwise ET is well 

described by theoretical studies giving reasonable values for the energetics in the RCs. 

However, the discussion of ET and absorption at low temperatures within the framework of 

adiabatic theory remains to be done. 

N O N - M O N O E X P O N E N T I A L I T Y O F T H E F L U O R E S C E N C E EMISSION 

The experimental observations presented above fitted well into the reaction model A (or 

C) where only functionally necessary reaction steps are involved. We will show now that 

more detailed investigations exhibit an additonal kinetic component: Time resolved emission 

spectroscopy by fluorescence up conversion gives a valuable tool to study the properties of 

electronically excited emitting states without any interference of no emitting product states 

[11] allowing high sensitivity. An experimental result is given for RC from Rb. sphaeroides 

in Fig. 4 [11]. Here the decay of the emission is displayed in a semi logarithmic plot. The 

experimental data demonstrate that the decay of the fluorescence is not monoexponential: 

Apparently the 3.5 ps process deduced from the gain experiments must be split into a 2.2 ps 

and a 7 ps reaction. The amplitude ratio η = A(7 ps)/A(2.2 ps) is small, η ~ 0.25. 

(Indications of such a biexponential decay of P* have been seen before. [9, 15]) Of special 

interest is the finding that the emission experiment does not give any indication for a subpico-
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Figure 4. Time dependence of the fluorescence emission (910-930 nm) of RC from Rb. sphaeroides. 

second kinetic component which one would expect, if the subpicosecond kinetic component 

is related to vibrational relaxation (Model Bi). 

The observation of an additional time constant requires an extension of the reaction 

models: Trivial is the assumption of a functional heterogeneity of the sample. In this case one 

would deal with two components having a different speed of the primary ET reaction. For a 

homogeneous sample one has to assume that the longer emission decay time is related to a 

new intermediate state (we call it N). The experimental observation of Ν in emission indicates 

that it is coupled directly to P*. There are several possibilities to introduce the new state in a 

reaction model. We only want to discuss here the simplified situation where Ν is a not 

emitting state coupled only to P* while model A applies for the further reaction. In this case 

one can calculate the reaction rates to and from Ν (via the emission experiment) and the 

spectral properties of intermediate Ν from previously measured transient absorption data. 

This evaluation yields: The reaction from P* to Ν is slow with a rate of 1/13 ps while the re

active rate from P* to Ρ^ΒΛ" is four times faster. The back reaction from Ν to P* is fast with 

a rate of 1/4.8 ps. The difference spectrum of state Ν shows spectral properties which arc 

similar to those of P+B,\~. As a consequence one could speculate that Ν is the radical pair 

state P*BR" where the electron is transiently brought to the Β branch. The further evaluation 

of the transient data shows that the spectra of the other intermediate states remain very similar 

to those obtained with the simplified reaction model A. 

In conclusion, time resolved spectroscopy on reaction centers of the purple bacteria 

Rb. sphaeroides and Rps. viridis indicate that electron transfer of native RC occurs stepwise 

using the different chromophores of the A branch as real intermediate electron carriers. The 

observation of the biexponentiality could be taken as an indication that there is a transient 

population of the radical pair state P +Bß" on the "inactive" Β chromophore branch. Under this 

assumption the high asymmetry of the charge transfer would require a very slow electron 

transfer step from the monomeric bacteriochlorophyll BB to the neighbouring bacteriopheo

phytin HB-
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