131 research outputs found

    USDA conservation program and practice effects on wetland ecosystem services

    Get PDF
    Abstract. Implementation of the U.S. Department of Agriculture (USDA) Conservation Reserve Program (CRP) and Wetlands Reserve Program (WRP) has resulted in the restoration of .2 million ha of wetland and grassland habitats in the Prairie Pothole Region (PPR). Restoration of habitats through these programs provides diverse ecosystem services to society, but few investigators have evaluated the environmental benefits achieved by these programs. We describe changes in wetland processes, functions, and ecosystem services that occur when wetlands and adjacent uplands on agricultural lands are restored through Farm Bill conservation programs. At the scale of wetland catchments, projects have had positive impacts on water storage, reduction in sedimentation and nutrient loading, plant biodiversity, carbon sequestration, and wildlife habitat. However, lack of information on the geographic location of restored catchments relative to landscape-level factors (e.g., watershed, proximity to rivers and lakes) limits interpretation of ecosystem services that operate at multiple scales such as floodwater retention, water quality improvement, and wildlife habitat suitability. Considerable opportunity exists for the USDA to incorporate important landscape factors to better target conservation practices and programs to optimize diverse ecosystem services. Restoration of hydrologic processes within wetlands (e.g., hydroperiod, water level dynamics) also requires a better understanding of the influence of conservation cover composition and structure, and management practices that occur in uplands surrounding wetlands. Although conservation programs have enhanced delivery of ecosystem services in the PPR, the use of programs to provide long-term critical ecosystem services is uncertain because when contracts (especially CRP) expire, economic incentives may favor conversion of land to crop production, rather than reenrollment. As demands for agricultural products (food, fiber, biofuel) increase, Farm Bill conservation programs will become increasingly important to ensure provisioning of ecosystem services to society, especially in agriculturally dominated landscapes. Thus, continued development and support for conservation programs legislated through the Farm Bill will require a more comprehensive understanding of wetland ecological services to better evaluate program achievements relative to conservation goals

    Ecosystem development after mangrove wetland creation : plant–soil change across a 20-year chronosequence

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecosystems 15 (2012): 848-866, doi:10.1007/s10021-012-9551-1.Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses

    Defining the importance of landscape metrics for large branchiopod biodiversity and conservation: the case of the Iberian Peninsula and Balearic Islands

    Get PDF
    The deficiency in the distributional data of invertebrate taxa is one of the major impediments acting on the bias towards the low awareness of its conservation status. The present study sets a basic framework to understand the large branchiopods distribution in the Iberian Peninsula and Balearic Islands. Since the extensive surveys performed in the late 1980s, no more studies existed updating the information for the whole studied area. The present study fills the gap, gathering together all available information on large branchiopods distribution since 1995, and analysing the effect of human population density and several landscape characteristics on their distribution, taking into consideration different spatial scales (100 m, 1 km and 10 km). In overall, 28 large branchiopod taxa (17 anostracans, 7 notostracans and 4 spinicaudatans) are known to occur in the area. Approximately 30% of the sites hosted multiple species, with a maximum of 6 species. Significant positive co-occurring species pairs were found clustered together, forming 4 different associations of large branchiopod species. In general, species clustered in the same group showed similar responses to analysed landscape characteristics, usually showing a better fit at higher spatial scales.Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq [401045/2014-5]Spanish Ministry of Education, Culture and Sport [FPU014/06783]info:eu-repo/semantics/publishedVersio

    Classifying the Hydrologic Function of Prairie Potholes with Remote Sensing and GIS

    Get PDF
    A sequence of Landsat TM/ETM+ scenes capturing the substantial surface water variations exhibited by prairie pothole wetlands over a drought to deluge period were analyzed in an attempt to determine the general hydrologic function of individual wetlands (recharge, flowthrough, and discharge). Multipixel objects (water bodies) were clustered according to their temporal changes in water extents. We found that wetlands receiving groundwater discharge responded differently over the time period than wetlands that did not. Also, wetlands located within topographically closed discharge basins could be distinguished from discharge basins with overland outlets. Field verification data showed that discharge wetlands with closed basins were most distinct and identifiable with reasonable accuracies (user’s accuracy=97%, producer’s accuracy=71%). The classification of other hydrologic function types had lower accuracies reducing the overall accuracy for the four hydrologic function classes to 51%. A simplified classification approach identifying only two hydrologic function classes was 82%. Although this technique has limited success for detecting small wetlands, Landsat-derived multipixel-object clustering can reliably differentiate wetlands receiving groundwater discharge and provides a new approach to quantify wetland dynamics in landscape scale investigations and models

    A Preliminary Biological Assessment of Long Lake National Wildlife Refuge Complex, North Dakota

    Get PDF
    This report represents an initial biological assessment of wetland conditions on Long Lake National Wildlife Refuge (NWR), Slade NWR, and Florence Lake NWR that was conducted as part of the pre-planning phase for development of a Comprehensive Conservation Plan (CCP). According to the 1997 National Wildlife Refuge System Improvement Act (NWRSIA), decisions guiding NWR management should be based on the best available scientific information. Therefore, this report attempts to integrate relevant information from many different scientific disciplines (e.g., geology, hydrology, biology) to assist the U.S. Fish and Wildlife Service (USFWS) in identifying ecological constraints and opportunities imposed by the land base being considered. The intent is to provide information and ideas necessary for evaluating the potential benefits and detriments of management actions during the decision making process that accompanies development of biological goals and objectives. Information in this report is based on a relatively limited number of published articles, past notes, and observations during a visit to Long Lake, Florence Lake, and Slade NWRs. The authors only attempted to locate sufficient relevant information necessary to formulate more definitive ideas and provide additional context. Thus, the information provided below is incomplete and a more thorough synthesis will be required. Further, interpretation of published information can vary among individuals, and the Long Lake NWR Complex (hereafter Complex) staff is encouraged to review the documents cited in this report. Many years of staff observation and experience managing the Complex are invaluable to ensuring that information used to make decisions is applicable. Consequently, some sections contain information that was not fully explored in the evaluation section; however, the information was retained because it may be useful as the Complex staff and core CCP team examine different management options. Finally, decisions regarding management of the wetland community also require integrating information from terrestrial lands that impact wetlands (i.e. catchment). Although this may seem simple and straightforward, this task often is difficult because it frequently requires an iterative approach to ensure that important issues that may affect management of both wetlands and uplands have not been omitted. This report does not contain conclusions, nor does it advocate any opinions (favorable or unfavorable) regarding the biological program. Further, concepts such as alternatives, goals, and objectives, are not discussed. The core CCP team will address these topics. Rather, it represents a summary that hopefully will be used to focus future discussion regarding biological data needs and approaches for using this information to make decisions. Ultimately, however, scientific information alone will not lead to a definitive decision regarding future direction. Also, biology is only one of many components that must be considered in the evaluation. Therefore, it is recommended that USFWS personnel responsible for determining the future direction of Complex management be consulted to establish guidelines and agree on the approach that will be used in evaluating the biological program prior to proceeding

    Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasin of the Red River of the North

    Get PDF
    Concern over flooding along rivers in the Prairie Pothole Region has stimulated interest in developing spatially distributed hydrologic models to simulate the effects of wet¬land water storage on peak river flows. Such models require spatial data on the storage volume and interception area of existing and restorable wetlands in the watershed of interest. In most cases, information on these model inputs is lacking because resolution of existing topographic maps is inadequate to estimate volume and areas of existing and restorable wetlands. Consequently, most studies have relied on wetland area to volume or interception area relationships to estimate wetland basin storage characteristics by using available surface area data obtained as a product from remotely sensed data (e.g., National Wetlands Inventory). Though application of areal input data to estimate volume and interception areas is widely used, a drawback is that there is little information available to provide guidance regarding the application, limita¬tions, and biases associated with such approaches. Another limitation of previous modeling efforts is that water stored by wetlands within a watershed is treated as a simple lump storage component that is filled prior to routing overflow to a pour point or gaging station. This approach does not account for dynamic wetland processes that influence water stored in prairie wetlands. Further, most models have not considered the influence of human-induced hydrologic changes, such as land use, that greatly influence quantity of surface water inputs and, ultimately, the rate that a wetland basin fills and spills. The goals of this study were to (1) develop and improve methodologies for estimating and spatially depicting wet-land storage volumes and interceptions areas and (2) develop models and approaches for estimating/simulating the water storage capacity of potentially restorable and existing wetlands under various restoration, land use, and climatic scenarios. To address these goals, we developed models and approaches to spatially represent storage volumes and interception areas of existing and potentially restorable wetlands in the upper Mustinka subbasin within Grant County, Minn. We then developed and applied a model to simulate wetland water storage increases that would result from restoring 25 and 50 percent of the farmed and drained wetlands in the upper Mustinka subbasin. The model simulations were performed during the growing season (May–October) for relatively wet (1993; 0.67 m of precipitation) and dry (1987; 0.32 m of precipitation) years. Results from the simulations indicated that the 25 percent restoration scenario would increase water storage by 27–32 percent and that a 50 percent scenario would increase storage by 53–63 percent. Additionally, we estimated that wetlands in the subbasin have potential to store 11.57–20.98 percent of the total precipitation that fell over the entire subbasin area (52,758 ha). Our simulation results indicated that there is considerable potential to enhance water storage in the subbasin; however, evaluation and calibration of the model is necessary before simulation results can be applied to management and planning decisions. In this report we present guidance for the development and application of models (e.g., surface area-volume predictive models, hydrology simulation model) to simulate wetland water storage to provide a basis from which to understand and predict the effects of natural or human-induced hydrologic alterations. In developing these approaches, we tried to use simple and widely available input data to simulate wetland hydrology and predict wetland water storage for a specific precipitation event or a series of events. Further, the hydrol¬ogy simulation model accounted for land use and soil type, which influence surface water inputs to wetlands. Although information presented in this report is specific to the Mustinka subbasin, the approaches and methods developed should be applicable to other regions in the Prairie Pothole Region

    Design Considerations for Optically Connected Systems on Chip

    No full text
    This paper addresses some fundamental issues relating to the design of systems on chip that utilize optical interconnects. We present an information theoretical model for assessing trade-offs between global and local partitions in these systems, and evaluate interconnect topology synthesis and application mapping techniques for digital signal processing (DSP) applications in these systems. 1

    The Wetland Continuum: A Conceptual Framework for Interpreting Biological Studies

    Get PDF
    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axes, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations
    • …
    corecore