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Abstract A sequence of Landsat TM/ETM+ scenes
capturing the substantial surface water variations exhibited
by prairie pothole wetlands over a drought to deluge period
were analyzed in an attempt to determine the general
hydrologic function of individual wetlands (recharge, flow-
through, and discharge). Multipixel objects (water bodies)
were clustered according to their temporal changes in water
extents. We found that wetlands receiving groundwater
discharge responded differently over the time period than
wetlands that did not. Also, wetlands located within
topographically closed discharge basins could be distin-
guished from discharge basins with overland outlets. Field
verification data showed that discharge wetlands with
closed basins were most distinct and identifiable with
reasonable accuracies (user’s accuracy=97%, producer’s
accuracy=71%). The classification of other hydrologic
function types had lower accuracies reducing the overall
accuracy for the four hydrologic function classes to 51%. A
simplified classification approach identifying only two
hydrologic function classes was 82%. Although this
technique has limited success for detecting small wetlands,

Landsat-derived multipixel-object clustering can reliably
differentiate wetlands receiving groundwater discharge and
provides a new approach to quantify wetland dynamics in
landscape scale investigations and models.

Keywords Landsat . Cluster analysis .Wetland
classification . Object-oriented image analysis

Introduction

The use of optical and microwave satellite data is common
in studies of wetland vegetation and inundation across a
range of spatial and temporal scales (Ozesmi and Bauer
2002; Melack 2004; Mertes et al. 2004; Henderson and
Lewis 2008). However, the timing of data acquisition,
temporal variability of wetland water levels, and limited
spatial resolution can complicate the use of satellite data for
wetland classification (Ozesmi and Bauer 2002). Given
these limitations, wetlands are commonly classified and
mapped with high resolution aerial photography, e.g. the
National Wetlands Inventory (USFWS 2008), albeit at a
higher cost and, consequently, with limited temporal
repeatability.

A number of studies have taken advantage of the
moderate resolution, 16-day return cycle, and long acqui-
sition history available from the Landsat program
(http://landsat.gsfc.nasa.gov) to study surface water (Work
and Gilmer 1976; Leahy et al. 2005; Baker et al. 2007;
Jones et al. 2009). In the Prairie Pothole Region (PPR) of
central North America, several remote sensing studies used
Landsat data acquired during the 1980s to 2000s to study
water dynamics (Sethre et al. 2005; Beeri and Phillips
2007; Zhang et al. 2009a; b). These studies described open
water detection techniques, identified open water variations
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and distributions, and quantified seasonal and annual
surface water variability, but did not examine if the
dynamics of visible surface water in a prairie pothole
reflected the underlying hydrologic function of that partic-
ular wetland, i.e. its relationship to ground water.

In the PPR, groundwater connectivity influences wetland
hydroperiod and the composition of wetland plant and
animal communities (Kantrud et al. 1989; Cowardin and
Golet 1995; LaBaugh et al. 1998; Euliss et al. 2004;
Johnson et al. 2004; van der Valk 2005). In addition, the
type of basin a wetland is located in can affect wetland
hydroperiods. Basins can be open or closed where open
basins contain a spill point allowing for overland outflow
and closed basins do not.

Generally, prairie potholes that are located in areas
where ground water is discharged (hereafter referred to as
discharge wetlands) tend to have high solute concentrations
(Swanson et al. 1988; LaBaugh et al. 1996; LaBaugh et al.
1998) and consistently contain surface water, even during
moderately dry periods. By contrast, wetlands contributing
to groundwater recharge but not receiving groundwater
discharge (hereafter referred to as recharge wetlands)
usually depend entirely on water inputs from precipitation
and subsequent overland flow. These wetlands have low
solute concentrations and typically contain surface water on
a temporary basis, limited to early spring or after periods of
heavy precipitation. Wetlands that receive groundwater
discharge in part of their basin while also contributing to
groundwater recharge in other parts are referred to as flow-
through wetlands (LaBaugh 1989). Flow-through wetlands
tend to have intermediate solute concentrations.

This paper describes the utility of a new method for
classifying changes in surface water extent in order to
estimate the hydrologic function of individual wetlands
across a large area. The method uses terrain analysis, a time
series of seven Landsat TM and ETM+ scenes acquired
during a multiyear drought-to-deluge cycle, and a special-
ized clustering algorithm for large datasets. The ability to
classify wetlands by their dynamics would facilitate the
prediction and the modeling of ecosystem services associ-
ated with different wetland hydrologic functional classes
across entire wetland regions, an objective of the U.S.
Geological Survey (USGS) Integrated Landscape Monitor-
ing Initiative (Koshel and McAllister 2008).

Methods

Study Area and Landsat Data

The study area was located in the Missouri Coteau portion
(approximately 5,400 km2) of Landsat path 31/row 27 in
east-central North Dakota (Fig. 1). The Missouri Coteau

was formed by glacial deposition and is approximately
400 m higher in elevation than the Drift Plain located to the
east. Locally, topography varies by approximately 30 m
(Winter and Rosenberry 1998). Non-irrigated agriculture is
the primarily land use and livestock grazing is common in
areas unsuited for cultivation (USGS 2001). The average
annual precipitation (1951 June to 2005 April) was
approximately 444 mm and fell during the summer months
(High Plains Regional Climate Center 2005), but annual
precipitation is variable with multiyear cycles of below- and
above-normal precipitation (Winter and Rosenberry 1998).
The region experienced a dry period from the late 1980s
through 1992, followed by the wettest period in a century
(Winter and Rosenberry 1998; Rosenberry 2003),
producing ideal conditions for analyzing changes in surface
water with Landsat data.

Surface Water Remote Sensing

We generated binary water/nonwater maps using Landsat
imagery from seven dates (Table 1) across a drought-to-
deluge cycle. Water bodies were identified at each image
date using a supervised classification method developed in
See5 v2.03 (http://www.rulequest.com). The classification
model was trained by manually locating water and non-
water pixels (1,000 pixels per image). The radiance band
values except the thermal and panchromatic bands were
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Fig. 1 Location of Landsat (path 31/row 27) scene (red square)
within the Prairie Pothole Region (light yellow outline) and ESRI
satellite data in the background (http://services.arcgisonline.com). The
subset illustrates elevation produced from the 30-m DEM, the
Missouri Coteau (blue outline) where higher values (white) with more
relief are common, than the flatter and lower (black) terrain of the
Drift Plain. Classified wetlands were located within the Missouri
Coteau portion of the Landsat scene (Missouri Coteau boundary,
courtesy Ducks Unlimited)
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extracted at each training pixel for decision tree develop-
ment. After each decision tree was applied to its respective
Landsat scene, we visually inspected each classified image
and, if needed, added additional training points from areas
where either the water or nonwater pixels were incorrectly
predicted. The final accuracies of the seven decision tree
models averaged 99%. After classifying the water bodies,
each image was converted to a polygon vector format with
smoothing to remove pixel corner effects in ArcMap (ESRI
2006). The vectors were merged to create a maximum water
extent for each water body.

Terrain Analysis

After producing surface water maps, we found that some
wetlands located in close proximity, but sometimes with
different hydrologic functions, coalesced under high water
conditions to form single water bodies. This made it
necessary to develop a method to separate converging
polygons. Using watershed delineation techniques and an
unfilled 30-m DEM (USGS 2006) we identified individual
wetland delineation units. Slopes were calculated in degrees
based on the rate of elevation change between each pixel
and the neighboring pixel with the highest elevation. The
slope data, rather than elevation, were then used to generate
flow direction and identify pixels with no outflow. These
slope-based sinks were then used as pour points in a
watershed analysis to determine the contributing area of
each sink, the area we refer to in subsequent analysis as the
wetland delineation unit. When compared to classic
elevation raster processing methods (e.g., Jenson and
Domingue 1988; Jenson 1991), this slope-based method
increased the number depressions identifiable in the DEM.

Cluster Analysis

Our cluster analysis classified wetland delineation units as one
of four general types of hydrologic function: recharge, flow-
through, open discharge, and closed discharge. Within each
delineation unit, we calculated variation in surface water
extent in two ways: (1) as a percentage of the maximum water

extent; (2) as a percentage of the wetland delineation unit
(Fig. 2). We used two calculations for each wetland given
that the maximum extent of some wetlands occupied nearly
the entire wetland delineation unit, while others only
occupied a fraction of their respective delineation units
(Fig. 2). In turn, the temporal signature of each wetland was
represented by a 14-value vector (7 dates × 2 bases).

Where water was detected at only one date, wetlands
were automatically assigned to the recharge class. The
remaining wetland delineation units (n=26,774) were
classified using an unsupervised approach, CLARA (Clus-
tering LARge Applications) algorithm (Kaufman and
Rousseeuw 2005), implemented in S-Plus (Insightful Corp.,
version 6.1.2, 2002). In this case, CLARA grouped surface
water temporal patterns into four classes such that distances
between individual 14-dimensional vectors and their re-
spective class centers (also called medoids) were minimized
overall (Kaufman and Rousseeuw 2005). We then com-
pared these cluster centers to surface water variability we
detected in 14 wetlands with known hydrologic functions
from the extensively-studied Cottonwood Lake Study Area
(CLSA; Fig. 3; Swanson et al. 2003). Using the patterns
from these known types as a guide, we assigned hydrologic

Table 1 Landsat sensor and acquisition date

Sensor Year Day

TM 1989 21 May

TM 1991 12 Jun

TM 1997 14 Jul

ETM+ 2001 1 Jul

TM 2003 12 May

ETM+SLC-off 2004 9 Jul

TM 2005 18 Jun
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Fig. 2 An example of surface water polygons extracted from each
scene (blue), maximum surface water area (red), and wetland
delineation units (black) overlying a DOQQ
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function labels to the characteristic patterns (cluster centers)
generated by our unsupervised classification.

After labels were assigned to each cluster, a subsequent
field investigation (see Field Validation section for
methods) of 28 wetlands located in close proximity of
CLSA showed that our predictions tended to confuse flow-
through and open discharge basins. Thus, we modified our

clustering scheme (Fig. 4) by reclassifying wetlands
assigned to the flow-through and open discharge vectors
by performing an additional unsupervised classification to
split these confused classes, a technique known as “cluster
busting.” This clustering scheme based on the 14 CLSA
wetlands and 28 additional wetlands identified hydrologic
functions with an overall accuracy of 86% (Table 2).

Fig. 3 Surface water patterns for 14 individual wetlands located at CLSA calculated with the percent of maximum water extent and percent of
wetland delineation unit methods for known recharge, flow-through, open discharge, and closed discharge wetlands

322 Wetlands (2011) 31:319–327



Field Validation

To validate the results, we randomly selected 144 wetlands
from National Wetlands Inventory (NWI) data to visit
during the summer of 2008 (USFWS 2008). The selected
wetlands were centrally located within a 400 m transect

following roads that traversed the center of the study area in
a north to south orientation. The hydrologic function of
each wetland was assessed in the field by determining the
topographic position of a wetland relative to nearby
wetlands and identifying the species composition of its
aquatic plant community.

Species composition of wetland plant communities is
closely correlated with differences in wetland water
chemistry (Stewart and Kantrud 1972) resulting primarily
from species specific tolerances to dissolved salts (Kantrud et
al. 1989). Therefore, plant species composition provided a
surrogate measure of water chemistry and, when combined
with topographic information, was used to reliably estimate
hydrologic regime. Open and closed basins were discerned
by identifying if surface outflow could occur. Those
designated as closed basins had no outlet for surface water
outflow, while open basins had water spilling or an area where
water could potentially spill given high water conditions.

Of the 144 wetlands selected for validation, 87 were
included in the final assessment (Table 3). A combination
of factors limited the validity of certain samples (n=22),
including local relief obstructing the view of a wetland
from the roadway and highly altered or indiscernible basin
types. In addition, various small recharge and flow-through
wetlands selected for validation from the NWI data
(USFWS 2008; n=35) did not correspond to a wetland
delineation unit or a surface water polygon and therefore,
could not be used for evaluation.

Results

Hydrologic Function Classification

Representative temporal patterns of remotely sensed surface
water, as indicted by cluster centers from the unsupervised
clustering (Fig. 4), were generally consistent with surface
water dynamics exhibited by wetlands with known hydro-
logic functions at the CLSA (Fig. 3). At CLSA, all wetlands
were dry in 1991 (Fig. 3). During deluge, closed discharge

Class Field survey data Total User’s accuracy

R FT OD CD

Cluster classification

R 2 2 0 0 4 50%

FT 1 5 0 1 7 71%

OD 0 1 7 0 8 88%

CD 0 0 1 22 23 96%

Total 3 8 8 23 42

Producer’s accuracy 67% 63% 88% 96% – 86%

Table 2 Calibration accuracy as-
sessment of hydrologic function
classifications (R = recharge;
FT = flow-through; OD = open
discharge; CD = closed
discharge)

Fig. 4 Cluster centers calculated from a maximum water extent and b
wetland delineation unit methods
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wetlands at CLSA (Fig. 3), and those wetlands identified as
closed discharge in the cluster analysis (Fig. 4), had
consistently higher water levels. The 1997 spike in surface
water was a key identifier of recharge wetlands (Figs. 3, 4).
Known hydrologic functions in the flow-through and open
discharge classes were both few in number, and inconsistent
in their dynamics at CLSA (Fig. 3). The two classes from the
unsupervised clustering with temporal patterns falling
between closed discharge and recharge classes were labeled
as open discharge and flow-through (Fig. 4). Note that while
these classes exhibit similar dynamics as a percentage of
maximum water extent (Fig 4a), there is greater separation
between them when water extent is calculated as a
percentage of wetland delineation units (Fig. 4b).

Results of the hydrologic function classification, as
mapped by wetland delineation units across the Missouri
Coteau, are illustrated in Figure 5. Hydrologic function
predictions are generally consistent with expected land-
scape positions of the four functional wetland types.
Closed discharge basins are located at topographic lows,
both locally and regionally. Recharge wetlands are
concentrated at local topographic highs. Flow-through
and open discharge functional types tend to occupy
intermediate positions between recharge and closed dis-
charge wetlands.

Accuracy Assessment

Field validation revealed that we generally under-estimated
the number of flow-through wetlands and over-estimated
the number of open discharge wetlands (Table 3a). The
classified data from the random survey included 15

recharge wetlands, but during field visits, 13 were deter-
mined to be flow-through wetlands. Twelve of these 13
misclassified flow-through wetlands had detectable water
at only one date, resembling what we conceived prior to
the cluster analysis to be recharge wetlands. Over-
prediction in the open discharge class was nearly evenly
divided between wetlands that actually had flow-through
or closed discharge functions (Table 3a), resulting in
substantial declines in accuracy rates relative to wetlands
used to calibrate the cluster analysis (Table 2). The
reference sample for the recharge class included only
three wetlands, a sample size too small for estimating the
producer’s accuracy for recharge wetlands with high
confidence (Congalton 1991).

Modified Hydrologic Function Classification

A more general approach to classifying hydrologic
function can be taken by combining; (1) recharge and
flow-through wetlands, (2) open and closed discharge
wetlands. When this is done, overall classification
accuracy increases to 82% (Table 3b). The combination
of recharge and flow-through represents a class with
similar dynamics of a more temporary nature, equivalent
to the temporary and seasonal classes in the Cowardin
system (Cowardin and Golet 1995). Discharge wetlands
with open and closed basins are more likely to contain
water at multiple dates, equivalent to the semi-permanent
class in the Cowardin system (Cowardin and Golet 1995).
Nonetheless, over-prediction of open discharge wetlands
as flow-through wetlands remains a source of error in this
more general classification (Table 3b).

Class Field survey data Total User's accuracy

R FT OD CD

a. Classification accuracies of four hydrologic function classes

Cluster classification

R 2 13 0 0 15 13%

FT 0 3 1 0 4 75%

OD 1 14 7 13 35 20%

CD 0 0 1 32 33 97%

Total 3 30 9 45 87 –

Producer’s accuracy 67% 10% 78% 71% – 51%

b. Classification accuracies of two hydrologic function classes

R/FT OD/CD

Cluster classification

R/FT 18 1 19 95%

OD/CD 15 53 68 78%

Total 33 54 87 –

Producer’s accuracy 55% 98% – 82%

Table 3 Field assessment of
remotely sensed hydrologic
function classifications (R =
recharge; FT = flow-through;
OD = open discharge; CD =
closed discharge)
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Discussion

The results of our study suggest that cluster analysis is
capable of grouping wetlands based on similarities in
surface water dynamics and may generate improved results
if several issues are addressed. A factor contributing to low
accuracies was the inconsistent detection of small tempo-
rary recharge wetlands and their misclassifications as flow-
through wetlands that exhibited detectable water on a single
date.

If high resolution data is available and feasible, we
expect improved accuracies for smaller wetlands. The
minimum size of surface water bodies that can be reliably
detected using Landsat-based classifiers is approximately
0.7–1.0 ha (Federal Geographic Data Committee 1992;
Lunetta and Balogh 1999; Zhang et al. 2009a, b). However,
the average size of PPR wetlands is approximately 0.5 ha
(van der Valk and Pederson 2003). Although existing
remote sensing methods report reasonable water detection
at approximately half-pixel (225 m2) water extents (Beeri
and Phillips 2007), we expect surface water area calcu-

lations for small wetlands with high percentages of mixed
pixels, i.e., vegetation and water, to have underestimated
water area. Accurately accounting for surface water in small
wetlands may be improved by using a percent water
calculation based on subpixel water estimates from Landsat
(Sethre et al. 2005; Rover et al. 2010) rather than polygon
area estimates. Our future goals include evaluating methods
to reduce wetland omission, avoid confusion between
classes, and assess the added benefits from incorporating
higher resolution data, including SPOT 5, LiDAR, and
RADARSAT-2.

Although wetland coalescence was addressed in this
study, in some instances, the 30 m elevation data were not
adequate for separating small recharge basins from large
discharge basins. This resulted in misclassifications when
the surface water dynamics from two or more adjacent
wetlands with differing functions merged. The addition of
higher resolution, more accurate elevation data that
accounts for slight differences in slope may increase the
number of small wetlands identified as unique units.
Although a higher resolution DEM (10 m) was not
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Fig. 5 Classification of hydrologic function in the Missouri Coteau and a subset area containing CLSA
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available for the study area at the time of analysis,
incorporating 10 m data, as well as LIDAR-derived digital
elevation models, should be evaluated.

Adding a seasonal vegetation component to the classi-
fication may also provide additional information for the
classification. Standing vegetation can reduce the extent of
detectable water resulting in unreliable seasonal water
extent changes. This effect would be observed in mid-
season data acquired after dense standing vegetation
conceals open water. The Normalized Difference Vegeta-
tion Index (NDVI) or radar acquired during a growing
season could be used to differentiate vegetation from
water.

Following the same methods described in this paper, an
overall study may be simplified and accuracies increased by
simply limiting analysis to specific acquisition dates.
Basing data selection on the surface water characteristics
associated with each type of wetland and the temporal
responses to precipitation events, separate classifications
can be applied to multiple datasets. For instance, recharge
wetlands tend to respond immediately to high precipitation
events, especially spring snowmelt, and then quickly dry as
water evaporates and infiltrates. An early spring acquisi-
tion, or several early spring acquisitions spanning multiple
years, coupled with midseason acquisitions during the same
years may provide dynamics that can be used to accurately
identify recharge wetlands. In contrast, discharge wetlands
usually continue to contain water during extremely dry
periods, so acquiring data during extended periods of
drought may reasonably capture wetlands receiving consid-
erable amounts of groundwater discharge.

For studies that span larger geographic areas, grouping
wetlands by similar climatic regions may also be necessary
prior to developing classification algorithms. Local precip-
itation events have varying impacts on each wetland type.
Considering significant climate gradients, including eleva-
tion, prior to cluster analysis may prevent unknowingly
mixing wetlands subject to differing degrees of precipita-
tion or snowmelt.

Conclusions

Although the results of our study were mixed, the method
demonstrates that temporal surface water dynamics can be
derived from Landsat imagery and used to quantify wetland
dynamics. The method provides essential spatial hydrologic
function information that does not currently exist to
improve regional modeling. Calibrating the classes is
challenging and requires a representative sample of wetland
types across the area of interest.

We found this method to be capable of classifying closed
discharge wetlands across a large area, although other

wetland functional types were problematic, and the results
may vary for other areas of the PPR. The classification of
hydrologic functional types is limited by the ability to
detect water on more than a single date and to separate
wetlands during high water events when neighboring
wetlands tend to coalesce. Several suggested improvements
may increase overall accuracy and the reliability of this
method for separating wetland dynamics by functional
types.

We designed this approach to map hydrologic function
for wetlands located in one area of the Missouri Coteau, but
object extraction and clustering methods may be applicable
to wetlands, lakes, or rivers in other areas of the PPR and
with modifications, in other regions. In addition, this
methodological approach could be applied to other tempo-
rally dynamic objects. In the future, as we refine our
ability to group wetlands based on similar responses to
precipitation and temperature, we will have an opportu-
nity to predict how surface water might respond to a
range of future climate scenarios and provide an
assessment of the contributions to ecosystem services
that PPR wetlands provide.
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