3,888 research outputs found

    Dynamics of the Transition corona

    Get PDF
    Magnetic reconnection between open and closed magnetic field in the corona is believed to play a crucial role in the corona/heliosphere coupling. At large scale, the exchange of open/closed connectivity is expected to occur in pseudo-streamer structures. However, there is neither clear observational evidence of how such coupling occurs in pseudo-streamers, nor evidence for how the magnetic reconnection evolves. Using a newly-developed technique, we enhance the off-limb magnetic fine structures observed with AIA and identify a pseudo-streamer-like feature located close to the northern coronal hole. After extrapolating the magnetic field with the PFSS model, we obtain a pseudo-streamer magnetic topology, null-point related topology bounded by open field. We compare the magnetic configuration with the UV observations and identify the magnetic structures expected to be involved in the event. Using an 3D MHD simulation of interchange reconnection, we showed that the evolution of the UV structures follows the magnetic field dynamics and the UV emitting structures have a pattern very similar to the plasma emission derived from the simulation. Our results highlight that the exchange between open and closed in the pseudo-streamer topology related to an observed event occurs at least partially at the null-point, similarly to the interchange reconnection in a single null-point topology. However, our results also indicate that the interchange reconnection in pseudo-streamers is a gradual physical process which opposes to the impulsive reconnection of the solar-jet model

    On the effects of Cosmions upon the structure and evolution of very low mass stars

    Get PDF
    A number of recent studies have suggested that cosmions, or WIMPS, may play an important role in the energetics of the solar interior; in particular, it has been argued that these hypothetical particles may transport sufficient energy within the nuclear-burning solar core so as to depress the solar core temperature to the point of resolving the solar neutrino problem. Solutions to the solar neutrino problem have proven themselves to be quite nonunique, so that it is of some interest whether the cosmion solution can be tested in some independent manner. It is argued that if cosmions solve the solar neutrino problem, then they must also play an important role in the evolution of low mass main sequence stars; and, second, that if they do so, then a simple (long mean free path) model for the interaction of cosmions with baryons leads to changes in the structure of the nuclear-burning core which may be in principal observable. Such changes include suppression of a fully-convective core in very low mass main sequence stars; and a possible thermal runaway in the core of the nuclear burning region. Some of these changes may be directly observable, and hence may provide independent constraints on the properties of the cosmions required to solve the solar neutrino problem, perhaps even ruling them out

    Nonlinear Force-Free Field Modeling of the Solar Magnetic Carpet and Comparison with SDO/HMI and Sunrise/IMaX Observations

    Full text link
    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet, which continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager (HMI) on the \textit{Solar Dynamics Observatory} (\textit{SDO}), and the Imaging Magnetograph eXperiment (IMaX) instrument on the \textit{Sunrise} balloon-borne observatory, as time dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce time series of three-dimensional (3D) nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate, and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.Comment: Accepted for publication in The Astrophysical Journal (13 pages, 10 figures

    Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems

    Get PDF
    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50 % to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation

    Data-Optimized Coronal Field Model: I. Proof of Concept

    Full text link
    Deriving the strength and direction of the three-dimensional (3D) magnetic field in the solar atmosphere is fundamental for understanding its dynamics. Volume information on the magnetic field mostly relies on coupling 3D reconstruction methods with photospheric and/or chromospheric surface vector magnetic fields. Infrared coronal polarimetry could provide additional information to better constrain magnetic field reconstructions. However, combining such data with reconstruction methods is challenging, e.g., because of the optical-thinness of the solar corona and the lack and limitations of stereoscopic polarimetry. To address these issues, we introduce the Data-Optimized Coronal Field Model (DOCFM) framework, a model-data fitting approach that combines a parametrized 3D generative model, e.g., a magnetic field extrapolation or a magnetohydrodynamic model, with forward modeling of coronal data. We test it with a parametrized flux rope insertion method and infrared coronal polarimetry where synthetic observations are created from a known "ground truth" physical state. We show that this framework allows us to accurately retrieve the ground truth 3D magnetic field of a set of force-free field solutions from the flux rope insertion method. In observational studies, the DOCFM will provide a means to force the solutions derived with different reconstruction methods to satisfy additional, common, coronal constraints. The DOCFM framework therefore opens new perspectives for the exploitation of coronal polarimetry in magnetic field reconstructions and for developing new techniques to more reliably infer the 3D magnetic fields that trigger solar flares and coronal mass ejections.Comment: 14 pages, 6 figures; Accepted for publication in Ap

    Propagating EUV disturbances in the solar corona : two-wavelength observations

    Get PDF
    Quasi-periodic EUV disturbances simultaneously observed in 171 Ã… and 195 Ã… TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics
    • …
    corecore