159 research outputs found

    Adipose tissue pathways involved in weight loss of cancer cachexia

    Get PDF
    White adipose tissue (WAT) constitutes our most expandable tissue and largest endocrine organ secreting hundreds of polypeptides collectively termed adipokines. Changes in WAT mass induce alterations in adipocyte secretion and function, which are linked to disturbed whole-body metabolism. Although the mechanisms controlling this are not clear they are dependent on changes in gene expression, a complex process which is regulated at several levels. Results in recent years have highlighted the role of small non-coding RNA molecules termed microRNAs (miRNAs), which regulate gene expression via post-transcriptional mechanisms. The aim of this thesis was to characterize global gene expression levels and describe novel miRNAs and adipokines controlling the function of human WAT in conditions with pathological increases or decreases in WAT mass. Obesity and cancer cachexia were selected as two models since they are both clinically relevant and characterized by involuntary changes in WAT mass. In Study I, expressional analyses were performed in subcutaneous WAT from cancer patients with or without cachexia and obese versus non-obese subjects. In total, 425 transcripts were found to be regulated in cancer cachexia. Pathway analyses based on this set of genes revealed that processes involving extracellular matrix, actin cytoskeleton and focal adhesion were significantly downregulated, whereas fatty acid metabolism was upregulated comparing cachectic with weight-stable cancer subjects. Furthermore, by overlapping these results with microarray data from an obesity study, many transcripts were found to be reciprocally regulated comparing the two conditions. This suggests that WAT gene expression in cancer cachexia and obesity are regulated by similar, albeit opposing, mechanisms. In Study II, the focus was on the family of fibroblast growth factors (FGFs), members of which have recently been implicated in the development of obesity and insulin resistance. A retrospective analysis of global gene expression data identified several FGFs (FGF1/2/7/9/13/18) to be expressed in WAT. However, only one, FGF1, was actively secreted from WAT and predominantly so from the adipocyte fraction. Moreover, FGF1 release was increased in obese compared to non-obese subjects, but was not normalized by weight loss. Although the clinical significance of these findings is not yet clear, it can be hypothesized that FGF1 may play a role in WAT growth, possibly by promoting fat cell proliferation and/or differentiation. In Study III, we identified adipose miRNAs regulated in obesity. Out of eleven miRNAs regulated by changes in body fat mass, ten controlled the production of the pro-inflammatory chemoattractant chemokine (C-C motif) ligand 2 (CCL2) when overexpressed in fat cells and for two, miR-126 and -193b, signaling circuits were defined. In Study IV, a novel adipokine, semaphorin 3C (SEMA3C), was identified by combining transcriptome and secretome data. Detailed studies focusing on SEMA3C revealed that this factor was secreted from adipocytes and induced the expression of extracellular matrix and matricellular genes in preadipocytes. Furthermore, SEMA3C mRNA levels correlated with interstitial fibrosis and insulin resistance in WAT derived from subjects with a wide range in BMI. In summary, the results presented in this thesis have delineated transcriptional alterations in WAT in two clinically relevant conditions, obesity and cancer cachexia. This has allowed the identification of novel adipokines and microRNAs with potential pathophysiological importance. These findings form the basis for further studies aiming at understanding the central role of WAT in disorders associated with metabolic complications

    Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol

    Get PDF
    © 2017 The Author(s). Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-ΰ B translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-ΰ B signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-k B translocation into the nucleus that resulted in high NF-k B transcription activity. The overall magnitude of NF-k B transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-k B translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-k B transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-k B transcription factor

    Effects of two common polymorphisms in the 3' untranslated regions of estrogen receptor β on mRNA stability and translatability

    Get PDF
    Estrogen signaling is mediated by estrogen receptors (ERs), ERα and ERβ. Aberrant estrogen signaling is involved in breast cancer development. ERα is one of the key biomarkers for diagnosis and treatment of breast cancer. Unlike ERα, ERβ is still not introduced as a marker for diagnosis and established as a target of therapy. Numerous studies suggest antiproliferative effects of ERβ, however its role remains to be fully explored. Albeit important, ERα is not a perfect marker, and some aspects of ERα function are still unclear. This thesis aims to characterize distinct molecular facets of ER action relevant for breast cancer and provide valuable information for ER-based diagnosis and treatment design. In PAPER I, we analyzed the functionality of two common single nucleotide polymorphisms in the 3’ untranslated regions of ERβ, rs4986938 and rs928554, which have been extensively investigated for association with various diseases. A significant difference in allelic expression was observed for rs4986938 in breast tumor samples from heterozygous individuals. However, no difference in mRNA stability or translatability between the alleles was observed. In PAPER II, we provided a more comprehensive understanding of ERβ function independent of ERα. A global gene expression analysis in a HEK293/ERβ cell model identified a set of ERβ-regulated genes. Gene Ontology (GO) analysis showed that they are involved in cell-cell signaling, morphogenesis and cell proliferation. Moreover, ERβ expression resulted in a significant decrease in cell proliferation. In PAPER III, using the human breast cancer MCF-7/ERβ cell model, we demonstrated, for the first time, the binding of ERα/β heterodimers to various DNA-binding regions in intact chromatin. In PAPER IV, we investigated a potential cross-talk between estrogen signaling and DNA methylation by identifying their common target genes in MCF-7 cells. Gene expression profiling identified around 150 genes regulated by both 17β- estradiol (E2) and a hypomethylating agent 5-aza-2’-deoxycytidine. Based on GO analysis, CpG island prediction analysis and previously reported ER binding regions, we selected six genes for further analysis. We identified BTG3 and FHL2 as direct target genes of both pathways. However, our data did not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes. In PAPER V, we further explored the interactions between estrogen signaling and DNA methylation, with focus on DNA methyltransferases (DNMT1, DNMT3a and DNMT3b). E2, via ERα, up-regulated DNMT1 and down-regulated DNMT3a and DNMT3b mRNA expression. Furthermore, DNMT3b interacted with ERα. siRNA-mediated DNMT3b depletion increased the expression of two genes, CDKN1A and FHL2. We proposed that the molecular mechanism underlying regulation of FHL2 and CDKN1A gene expression involves interplay of DNMT3b and ERα. In conclusion, the studies presented in this thesis contribute to the knowledge of ERβ function, and give additional insight into the cross-talk mechanisms underlying ERα signaling with ERβ and with DNA methylation pathways

    A Transcriptional Enhancer from the Coding Region of ADAMTS5

    Get PDF
    The revelation that the human genome encodes only approximately 25,000 genes and thus cannot account for phenotypic complexity has been one of the biggest surprises in the post-genomic era. However, accumulating evidence suggests that transcriptional regulation may be in large part responsible for this observed mammalian complexity. Consequently, there has been a strong drive to locate cis-regulatory regions in mammalian genomes in order to understand the unifying principles governing these regions, including their genomic distribution. Although a number of systematic approaches have been developed, these all discount coding sequence.Using the computational tool PRI (Pattern-defined Regulatory Islands), which does not mask coding sequence, we identified a regulatory region associated with the gene ADAMTS5 that encompasses the entirety of the essential coding exon 2. We demonstrate through a combination of chromatin immunoprecipitation and reporter gene studies that this region can not only bind the myogenic transcription factors MYOD and myogenin and the E-protein HEB but can also function as a very strong myogenic transcriptional enhancer.Thus, we report the identification and detailed characterization of an exonic enhancer. Ultimately, this leads to the interesting question of why evolution would be so parsimonious in the functional assignment of sequence

    TBP Binding-Induced Folding of the Glucocorticoid Receptor AF1 Domain Facilitates Its Interaction with Steroid Receptor Coactivator-1

    Get PDF
    The precise mechanism by which glucocorticoid receptor (GR) regulates the transcription of its target genes is largely unknown. This is, in part, due to the lack of structural and functional information about GR's N-terminal activation function domain, AF1. Like many steroid hormone receptors (SHRs), the GR AF1 exists in an intrinsically disordered (ID) conformation or an ensemble of conformers that collectively appears to be unstructured. The GR AF1 is known to recruit several coregulatory proteins, including those from the basal transcriptional machinery, e.g., TATA box binding protein (TBP) that forms the basis for the multiprotein transcription initiation complex. However, the precise mechanism of this process is unknown. We have earlier shown that conditional folding of the GR AF1 is the key for its interactions with critical coactivator proteins. We hypothesize that binding of TBP to AF1 results in the structural rearrangement of the ID AF1 domain such that its surfaces become easily accessible for interaction with other coactivators. To test this hypothesis, we determined whether TBP binding-induced structure formation in the GR AF1 facilitates its interaction with steroid receptor coactivator-1 (SRC-1), a critical coactivator that is important for GR-mediated transcriptional activity. Our data show that stoichiometric binding of TBP induces significantly higher helical content at the expense of random coil configuration in the GR AF1. Further, we found that this induced AF1 conformation facilitates its interaction with SRC-1, and subsequent AF1-mediated transcriptional activity. Our results may provide a potential mechanism through which GR and by large other SHRs may regulate the expression of the GR-target genes

    Genome wide association study identifies KCNMA1 contributing to human obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population. Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity.</p> <p>Methods</p> <p>We performed a GWA analysis in 164 morbidly obese subjects (BMI:body mass index > 40 kg/m<sup>2</sup>) and 163 Swedish subjects (> 45 years) who had always been lean. The 700 SNPs displaying the strongest association with obesity in the GWA were analyzed in a second cohort comprising 460 morbidly obese subjects and 247 consistently lean Swedish adults. 23 SNPs remained significantly associated with obesity (nominal <it>P</it>< 0.05) and were in a step-wise manner followed up in five additional cohorts from Sweden, France, and Germany together comprising 4214 obese and 5417 lean or population-based control individuals. Three samples, n = 4133, were used to investigate the population-based associations with BMI. Gene expression in abdominal subcutaneous adipose tissue in relation to obesity was investigated for14 adults.</p> <p>Results</p> <p>Potassium channel, calcium activated, large conductance, subfamily M, alpha member <it>(KCNMA1) </it>rs2116830*G and <it>BDNF </it>rs988712*G were associated with obesity in five of six investigated case-control cohorts. In meta-analysis of 4838 obese and 5827 control subjects we obtained genome-wide significant allelic association with obesity for <it>KCNMA1 </it>rs2116830*G with <it>P </it>= 2.82 Ă— 10<sup>-10 </sup>and an odds ratio (OR) based on cases vs controls of 1.26 [95% C.I. 1.12-1.41] and for <it>BDNF </it>rs988712*G with <it>P </it>= 5.2 Ă— 10<sup>-17</sup>and an OR of 1.36 [95% C.I. 1.20-1.55]. <it>KCNMA1 </it>rs2116830*G was not associated with BMI in the population-based samples. Adipose tissue (<it>P </it>= 0.0001) and fat cell (<it>P </it>= 0.04) expression of <it>KCNMA1 </it>was increased in obesity.</p> <p>Conclusions</p> <p>We have identified <it>KCNMA1 </it>as a new susceptibility locus for obesity, and confirmed the association of the <it>BDNF </it>locus at the genome-wide significant level.</p

    Naturally Occurring Osmolyte, Trehalose Induces Functional Conformation in an Intrinsically Disordered Activation Domain of Glucocorticoid Receptor

    Get PDF
    Intrinsically disordered (ID) regions are frequently found in the activation domains of many transcription factors including nuclear hormone receptors. It is believed that these ID regions promote molecular recognition by creating large surfaces suitable for interactions with their specific protein binding partners, which is a critical component of gene regulation by transcription factors. It has been hypothesized that conditional folding of these activation domains may be a prerequisite for their efficient interaction with specific coregulatory proteins, and subsequent transcriptional activity leading to the regulation of target gene(s). In this study, we tested whether a naturally occurring osmolyte, trehalose can promote functionally ordered conformation in glucocorticoid receptor's major activation function domain, AF1, which is found to exist as an ID protein, and requires an efficient interaction with coregulatory proteins for optimal activity. Our data show that trehalose induces an ordered conformation in AF1 such that its interaction with steroid receptor coactivator-1 (SRC-1), a critical coregulator of glucocorticoid receptor's activity, is greatly enhanced
    • …
    corecore