22,976 research outputs found
Theory of disorder-induced multiple coherent scattering in photonic crystal waveguides
We introduce a theoretical formalism to describe disorder-induced extrinsic
scattering in slow-light photonic crystal waveguides. This work details and
extends the optical scattering theory used in a recent \emph{Physical Review
Letter} [M. Patterson \emph{et al.}, \emph{Phys. Rev. Lett.} \textbf{102},
103901 (2009)] to describe coherent scattering phenomena and successfully
explain complex experimental measurements. Our presented theory, that combines
Green function and coupled mode methods, allows one to self-consistently
account for arbitrary multiple scattering for the propagating electric field
and recover experimental features such as resonances near the band edge. The
technique is fully three-dimensional and can calculate the effects of disorder
on the propagating field over thousands of unit cells. As an application of
this theory, we explore various sample lengths and disordered instances, and
demonstrate the profound effect of multiple scattering in the waveguide
transmission. The spectra yield rich features associated with disorder-induced
localization and multiple scattering, which are shown to be exasperated in the
slow light propagation regime
Lead Precipitation Fluxes at Tropical Oceanic Sites Determined From ^(210)Pb Measurements
Concentrations of lead, ^(210)Pb, and ^(210)Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm ^(210)Pb in rain were 250–900 for Pigeon Key (assuming 12% adsorption for ^(210)Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources.) The corresponding fluxes of lead to the oceans, based on measured or modeled ^(210)Pb precipitation fluxes, are about 4 ng Pb/cm^2y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key
Depth Dependence of the Structural Phase Transition of SrTiO_3 Studied with \beta-NMR and Grazing Incidence X-ray Diffraction
We present an investigation of the near-surface tetragonal phase transition
in SrTiO3, using the complementary techniques of beta-detected nuclear magnetic
resonance and grazing-incidence X-ray diffraction. The results show a clear
depth dependence of the phase transition on scales of a few microns. The
measurements support a model in which there are tetragonal domains forming in
the sample at temperatures much higher than the bulk phase transition
temperature. Moreover, we find that these domains tend to form at higher
temperatures preferentially near the free surface of the crystal. The details
of the tetragonal domain formation and their depth/lateral dependencies are
discussed.Comment: Accepted for publication in Phys. Rev.
Search for the electric dipole moment of the electron with thorium monoxide
The electric dipole moment of the electron (eEDM) is a signature of
CP-violating physics beyond the Standard Model. We describe an ongoing
experiment to measure or set improved limits to the eEDM, using a cold beam of
thorium monoxide (ThO) molecules. The metastable state in ThO
has important advantages for such an experiment. We argue that the statistical
uncertainty of an eEDM measurement could be improved by as much as 3 orders of
magnitude compared to the current experimental limit, in a first-generation
apparatus using a cold ThO beam. We describe our measurements of the state
lifetime and the production of ThO molecules in a beam, which provide crucial
data for the eEDM sensitivity estimate. ThO also has ideal properties for the
rejection of a number of known systematic errors; these properties and their
implications are described.Comment: v2: Equation (11) correcte
Approach Considerations in Aircraft with High-Lift Propeller Systems
NASA's research into distributed electric propulsion (DEP) includes the design and development of the X-57 Maxwell aircraft. This aircraft has two distinct types of DEP: wingtip propellers and high-lift propellers. This paper focuses on the unique opportunities and challenges that the high-lift propellers--i.e., the small diameter propellers distributed upstream of the wing leading edge to augment lift at low speeds--bring to the aircraft performance in approach conditions. Recent changes to the regulations related to certifying small aircraft (14 CFR x23) and these new regulations' implications on the certification of aircraft with high-lift propellers are discussed. Recommendations about control systems for high-lift propeller systems are made, and performance estimates for the X-57 aircraft with high-lift propellers operating are presented
Inverse problem of photoelastic fringe mapping using neural networks
This paper presents an enhanced technique for inverse analysis of photoelastic fringes using neural networks to determine the applied load. The technique may be useful in whole-field analysis of photoelastic images obtained due to external loading, which may find application in a variety of specialized areas including robotics and biomedical engineering. The presented technique is easy to implement, does not require much computation and can cope well within slight experimental variations. The technique requires image acquisition, filtering and data extraction, which is then fed to the neural network to provide load as output. This technique can be efficiently implemented for determining the applied load in applications where repeated loading is one of the main considerations. The results presented in this paper demonstrate the novelty of this technique to solve the inverse problem from direct image data. It has been shown that the presented technique offers better result for the inverse photoelastic problems than previously published works
Magnetic and electronic Co states in layered cobaltate GdBaCo2O5.5-x
We have performed non-resonant x-ray diffraction, resonant soft and hard
x-ray magnetic diffraction, soft x-ray absorption and x-ray magnetic circular
dichroism measurements to clarify the electronic and magnetic states of the
Co3+ ions in GdBaCo2O5.5. Our data are consistent with a 3+ Py Co HS state at
the pyramidal sites and a 3+ Oc Co LS state at the octahedral sites. The
structural distortion, with a doubling of the a axis (2ap x 2ap x 2ap cell),
shows alternating elongations and contractions of the pyramids and indicates
that the metal-insulator transition is associated with orbital order in the t2g
orbitals of the 3+ Py Co HS state. This distortion corresponds to an
alternating ordering of xz and yz orbitals along the a and c axes for the 3+ Py
Co . The orbital ordering and pyramidal distortion lead to deformation of the
octahedra, but the 3+ Oc Co LS state does not allow an orbital order to occur
for the 3+ Oc Co ions. The soft x-ray magnetic diffraction results indicate
that the magnetic moments are aligned in the ab plane but are not parallel to
the crystallographic a or b axes. The orbital order and the doubling of the
magnetic unit cell along the c axis support a non-collinear magnetic structure.
The x-ray magnetic circular dichroism data indicate that there is a large
orbital magnetic contribution to the total ordered Co moment
- …
