1,632 research outputs found
Recommended from our members
Automatically accelerating non-numerical programs by architecture-compiler co-design
Because of the high cost of communication between processors, compilers that parallelize loops automatically have been forced to skip a large class of loops that are both critical to performance and rich in latent parallelism. HELIX-RC is a compiler/microprocessor co-design that opens those loops to parallelization by decoupling communication from thread execution in conventional multicore architecures. Simulations of HELIX-RC, applied to a processor with 16 Intel Atom-like cores, show an average of 6.85Ă— performance speedup for six SPEC CINT2000 benchmarks.</jats:p
Differential rates of perinatal maturation of human primary and nonprimary auditory cortex
Abstract Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl’s gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years
Universal behavior of quantum Green's functions
We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined
in a d-dimensional domain. The object of interest is the time-independent Green
function G_z(r,r') = . Recently, in one dimension (1D),
the Green's function problem was solved explicitly in inverse form, with
diagonal elements of Green's function as prescribed variables. The first aim of
this paper is to extract from the 1D inverse solution such information about
Green's function which cannot be deduced directly from its definition. Among
others, this information involves universal, i.e. u(r)-independent, behavior of
Green's function close to the domain boundary. The second aim is to extend the
inverse formalism to higher dimensions, especially to 3D, and to derive the
universal form of Green's function for various shapes of the confining domain
boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy
Bose-Einstein condensation in arbitrarily shaped cavities
We discuss the phenomenon of Bose-Einstein condensation of an ideal
non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the
finite extension of the cavity on all thermodynamical quantities, especially on
the critical temperature of the system, is considered. We use two main methods
which are shown to be equivalent. The first deals with the partition function
as a sum over energy levels and uses a Mellin-Barnes integral representation to
extract an asymptotic formula. The second method converts the sum over the
energy levels to an integral with a suitable density of states factor obtained
from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review
EcoEvo-MAPS: An Ecology and Evolution Assessment for Introductory through Advanced Undergraduates
A new assessment tool, Ecology and Evolution–Measuring Achievement and Progression in Science or EcoEvo-MAPS, measures student thinking in ecology and evolution during an undergraduate course of study. EcoEvo-MAPS targets foundational concepts in ecology and evolution and uses a novel approach that asks students to evaluate a series of predictions, conclusions, or interpretations as likely or unlikely to be true given a specific scenario. We collected evidence of validity and reliability for EcoEvo-MAPS through an iterative process of faculty review, student interviews, and analyses of assessment data from more than 3000 students at 34 associate’s-, bachelor’s-, master’s-, and doctoral-granting institutions. The 63 likely/unlikely statements range in difficulty and target student understanding of key concepts aligned with the Vision and Change report. This assessment provides departments with a tool to measure student thinking at different time points in the curriculum and provides data that can be used to inform curricular and instructional modifications
Patchy Progress On Obesity Prevention: Emerging Exemplars, Entrenched Barriers, and New Thinking
Although there have been positive pockets of change, no country has yet turned around its obesity epidemic. Preventing an increase in obesity prevalence will require urgent actions from government as well as a broader spectrum of stakeholders than previously emphasized. In this paper, we review a number of regulatory and non-regulatory actions taken around the world to address obesity and discuss some of the reasons for the patchy progress. In addition, we preview the papers in this Lancet series, which each identify priority actions on key obesity issues and challenge some of the entrenched dichotomies that present obesity and its solutions in “either/or” terms. Although obesity is acknowledged as a complex issue, many debates about its causes and solutions are centered around overly simple dichotomies that present seemingly competing perspectives. Examples of such dichotomies explored in this series include: individual versus environmental causes of obesity, personal versus collective responsibilities for actions, supply versus demand explanations for consumption of unhealthy food, government regulation versus industry self-regulation, top down versus bottom up drivers for change, treatment versus prevention priorities, and under versus over nutrition focus. In the current paper, we explore the dichotomy of individual versus environmental drivers of obesity, which lay out two truths: people bear some personal responsibility for their health and environmental factors can readily support or undermine the ability of people to act in their self-interest. We propose a re-framing of obesity that emphasizes the reciprocal nature of the interaction between the environment and individual. Current food environments exploit people’s biological, psychological, social, and economic vulnerabilities, making it easier for them to eat unhealthful foods. This leads to preferences and demands for foods of poor nutritional quality, thus sustaining the unhealthful food environments. Breaking these vicious cycles will need regulatory actions from governments and greater efforts from industry and civil society
BMQ
BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals. Pages 49-52, v17n2, provided courtesy of Howard Gotlieb Archival Research Center
Integrating Teaching and Research in Undergraduate Biology Laboratory Education
A course recently designed and implemented at Stanford University applies practical suggestions for creating research-based undergraduate courses that benefit both teaching and research
On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration
We report on measurements of forces acting between two conducting surfaces in
a spherical-plane configuration in the 35 nm-1 micrometer separation range. The
measurements are obtained by performing electrostatic calibrations followed by
a residual analysis after subtracting the electrostatic-dependent component. We
find in all runs optimal fitting of the calibrations for exponents smaller than
the one predicted by electrostatics for an ideal sphere-plane geometry. We also
find that the external bias potential necessary to minimize the electrostatic
contribution depends on the sphere-plane distance. In spite of these anomalies,
by implementing a parametrixation-dependent subtraction of the electrostatic
contribution we have found evidence for short-distance attractive forces of
magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss
the relevance of our findings in the more general context of Casimir-Lifshitz
force measurements, with particular regard to the critical issues of the
electrical and geometrical characterization of the involved surfaces.Comment: 22 pages, 15 figure
Casimir effect due to a single boundary as a manifestation of the Weyl problem
The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases
the divergences can be eliminated by methods such as zeta-function
regularization or through physical arguments (ultraviolet transparency of the
boundary would provide a cutoff). Using the example of a massless scalar field
theory with a single Dirichlet boundary we explore the relationship between
such approaches, with the goal of better understanding the origin of the
divergences. We are guided by the insight due to Dowker and Kennedy (1978) and
Deutsch and Candelas (1979), that the divergences represent measurable effects
that can be interpreted with the aid of the theory of the asymptotic
distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases
the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having
geometrical origin, and an "intrinsic" term that is independent of the cutoff.
The Weyl terms make a measurable contribution to the physical situation even
when regularization methods succeed in isolating the intrinsic part.
Regularization methods fail when the Weyl terms and intrinsic parts of the
Casimir effect cannot be clearly separated. Specifically, we demonstrate that
the Casimir self-energy of a smooth boundary in two dimensions is a sum of two
Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a
geometrical term that is independent of cutoff, and a non-geometrical intrinsic
term. As by-products we resolve the puzzle of the divergent Casimir force on a
ring and correct the sign of the coefficient of linear tension of the Dirichlet
line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references
added, version to be published in J. Phys.
- …