3,230 research outputs found

    Gravitational GUT Breaking and the GUT-Planck Hierarchy

    Full text link
    It is shown that non-renormalizable gravitational interactions in the Higgs sector of supersymmetric grand unified theories (GUT's) can produce the breaking of the unifying gauge group GG at the GUT scale MGUT1016M_{\rm GUT} \sim 10^{16}~GeV. Such a breaking offers an attractive alternative to the traditional method where the superheavy GUT scale mass parameters are added ad hoc into the theory. The mechanism also offers a natural explanation for the closeness of the GUT breaking scale to the Planck scale. A study of the minimal SU(5) model endowed with this mechanism is presented and shown to be phenomenologically viable. A second model is examined where the Higgs doublets are kept naturally light as Goldstone modes. This latter model also achieves breaking of GG at MGUTM_{\rm GUT} but cannot easily satisfy the current experimental proton decay bound.Comment: 11 pages, REVTeX, 1 figure included as an uuencoded Z-compressed PostScript file. Our Web page at http://physics.tamu.edu/~urano/research/gutplanck.html contains ready to print PostScript version (with figures) as well as color version of plot

    Nuclear Chemical and Mechanical Instability and the Liquid-Gas Phase Transition in Nuclei

    Full text link
    The thermodynamic properties of nuclei are studied in a mean field model using a Skryme interaction. Properties of two component systems are investigated over the complete range of proton fraction from a system of pure neutrons to a system of only protons. Besides volume, symmetry, and Coulomb effects we also include momentum or velocity dependent forces. Applications of the results developed are then given which include nuclear mechanical and chemical instability and an associated liquid/gas phase transition in two component systems. The velocity dependence leads to further changes in the coexistence curve and nuclear mechanical and chemical instability curves.Comment: 21 pages, 9 figures, Results are changed due to error in progra

    Covariant response theory beyond RPA and its application

    Get PDF
    The covariant particle-vibration coupling model within the time blocking approximation is employed to supplement the Relativistic Random Phase Approximation (RRPA) with coupling to collective vibrations. The Bethe-Salpeter equation in the particle-hole channel with an energy dependent residual particle-hole (p-h) interaction is formulated and solved in the shell-model Dirac basis as well as in the momentum space. The same set of the coupling constants generates the Dirac-Hartree single-particle spectrum, the static part of the residual p-h interaction and the particle-phonon coupling amplitudes. This approach is applied to quantitative description of damping phenomenon in even-even spherical nuclei with closed shells 208^{208}Pb and 132^{132}Sn. Since the phonon coupling enriches the RRPA spectrum with a multitude of ph\otimesphonon states a noticeable fragmentation of giant monopole and dipole resonances is obtained in the examined nuclei. The results are compared with experimental data and with results of the non-relativistic approach.Comment: 12 pages, 4 figures, Proceedings of the NSRT06 Conferenc

    Relativistic Mean Field Approach and the Pseudo-Spin Symmetry

    Get PDF
    Based on the Relativistic Mean Field (RMF) approach the existence of the broken pseudo-spin symmetry is investigated. Both spherical RMF and constrained deformed RMF calculations are carried out employing realistic Lagrangian parameters for spherical and for deformed sample nuclei. The quasi - degenerate pseudo-spin doublets are confirmed to exist near the fermi surface for both spherical and deformed nuclei.Comment: 9 pages RevTex, 4 p.s figures, to appear in Phys. Rev. C as R.

    Fluctuation and dissipation dynamics in fusion reactions from stochastic mean-field approach

    Full text link
    By projecting the stochastic mean-field dynamics on a suitable collective path during the entrance channel of heavy-ion collisions, expressions for transport coefficients associated with relative distance are extracted. These transport coefficients, which have similar forms to those familiar from nucleon exchange model, are evaluated by carrying out TDHF simulations. The calculations provide an accurate description of the magnitude and form factor of transport coefficients associated with one-body dissipation and fluctuation mechanism.Comment: 9 pages, 5 figure

    Quadrupole Collective Dynamics from Energy Density Functionals: Collective Hamiltonian and the Interacting Boson Model

    Get PDF
    Microscopic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this work we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations, and the Interacting Boson Model. The two models are compared in a study of the evolution of non-axial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196^{192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM-2 Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ\gamma-vibration bands are compared to the corresponding sequences of experimental states.Comment: 10 pages, 4 figures; to be published in Phys. Rev.

    Magnetic moments of 33^{33}Mg in time-odd relativistic mean field approach

    Full text link
    The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground-state properties of 33^{33}Mg with effective interaction PK1. The ground state of 33^{33}Mg has been found to be prolate deformed, β2=0.23\beta_2=0.23, with the odd neutron in 1/2[330]1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV. The magnetic moment 0.9134μN- 0.9134 \mu_\mathrm{N} is obtained with the effective electromagnetic current which well reproduces the data 0.7456μN- 0.7456 \mu_\mathrm{N} self-consistently without introducing any parameter. The energy splittings of time reversal conjugate states, the neutron current, the energy contribution from the nuclear magnetic potential, and the effect of core polarization are discussed in detail.Comment: 13 pages, 4 figure

    Number of states with fixed angular momentum for identical fermions and bosons

    Full text link
    We present in this paper empirical formulas for the number of angular momentum I states for three and four identical fermions or bosons. In the cases with large I we prove that the number of states with the same M{\cal M} and n but different J is identical if I(n2)J1/2(n1)(n2)I \ge (n-2)J - {1/2} (n-1)(n-2) for fermions and I(n2)JI \ge (n-2)J for bosons, and that the number of states is also identical for the same M{\cal M} but different n and J if M{\cal M} \le min(n, 2J+1 - n) for fermions and for M{\cal M} \le min(n, 2J) for bosons. Here M=ImaxI{\cal M} =I_{max}-I, n is the particle number, and J refers to the angular momentum of a single-particle orbit for fermions, or the spin L carried by bosons.Comment: 9 pages, no figure

    Thermodynamic Limit and Decoherence: Rigorous Results

    Full text link
    Time evolution operator in quantum mechanics can be changed into a statistical operator by a Wick rotation. This strict relation between statistical mechanics and quantum evolution can reveal deep results when the thermodynamic limit is considered. These results translate in a set of theorems proving that these effects can be effectively at work producing an emerging classical world without recurring to any external entity that in some cases cannot be properly defined. In a many-body system has been recently shown that Gaussian decay of the coherence is the rule with a duration of recurrence more and more small as the number of particles increases. This effect has been observed experimentally. More generally, a theorem about coherence of bulk matter can be proved. All this takes us to the conclusion that a well definite boundary for the quantum to classical world does exist and that can be drawn by the thermodynamic limit, extending in this way the deep link between statistical mechanics and quantum evolution to a high degree.Comment: 5 pages, no figures. Contribution to proceedings of DICE 2006 (Piombino, Italy, September 11-15, 2006

    Superheavy nuclei in relativistic effective Lagrangian model

    Get PDF
    Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures beyond Z=82 and N=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps, and the shell correction energy. The effective Lagrangian model predicts N=172 and Z=120 and N=258 and Z=120 as spherical doubly magic superheavy nuclei, whereas N=184 and Z=114 show some magic character depending on the parameter set. The magicity of a particular neutron (proton) number in the analyzed mass region is found to depend on the number of protons (neutrons) present in the nucleus.Comment: 26 pages, REVTeX, 10 ps figures; changed conten
    corecore