183 research outputs found
Uncertainty Estimates for Theoretical Atomic and Molecular Data
Sources of uncertainty are reviewed for calculated atomic and molecular data
that are important for plasma modeling: atomic and molecular structure and
cross sections for electron-atom, electron-molecule, and heavy particle
collisions. We concentrate on model uncertainties due to approximations to the
fundamental many-body quantum mechanical equations and we aim to provide
guidelines to estimate uncertainties as a routine part of computations of data
for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final
accepted versio
MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra of 90Zr16O
Zirconium oxide(ZrO) is an important astrophysical molecule that defines the
S-star classification class for cool giant stars. Accurate, empirical
rovibronic energy levels, with associated labels and uncertainties, are
reported for 9 low-lying electronic states of the diatomic 90Zr16O molecule.
These 8088 empirical energy levels are determined using the Marvel (Measured
Active Rotational-Vibrational Energy Levels) algorithm with 23 317 input
assigned transition frequencies, 22 549 of which were validated. A
temperature-dependent partition function is presented alongside updated
spectroscopic constants for the 9 low-lying electronic states
2-Amino-N-(2-methoxyphenyl)-4,5-dimethylthiophene-3-carboxamide
In the title compound, C14H16N2O2S, the two aromatic rings make a dihedral angle of 13.9 (1)°. The crystal structure is stabilized by both inter- and intramolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds
5,7-Bis(1-benzothiophen-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxine
In the title compound, C22H14O2S3, the dioxane ring is disordered over two sites [site occupancies = 0.623 (3) and 0.377 (3)]; both components adopt half-chair conformations. The two benzothiophene ring systems are asymmetrically twisted away from the attached thiophene ring [dihedral angles = 20.57 (3) and 6.70 (3)°] and are oriented at an angle of 26.83 (3)°. No significant hydrogen bonding or π–π interactions are observed in the crystal structure
Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation
Cord blood (CB) has been used as a viable source of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in over 35,000 clinical hematopoietic cell transplantation (HCT) efforts to treat the same variety of malignant and non-malignant disorders treated by bone marrow (BM) and mobilized peripheral blood (mPB) using HLA-matched or partially HLA-disparate related or unrelated donor cells for adult and children recipients. This review documents the beginning of this clinical effort that started in the 1980's, the pros and cons of CB HCT compared to BM and mPB HCT, and recent experimental and clinical efforts to enhance the efficacy of CB HCT. These efforts include means for increasing HSC numbers in single CB collections, expanding functional HSCs ex vivo, and improving CB HSC homing and engraftment, all with the goal of clinical translation. Concluding remarks highlight the need for phase I/II clinical trials to test the experimental procedures that are described, either alone or in combination
From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata
Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring
Environmental Factors Controlling the Distribution of Symbiodinium Harboured by the Coral Acropora millepora on the Great Barrier Reef
Background: The Symbiodinium community associated with scleractinian corals is widely considered to be shaped by seawater temperature, as the coral's upper temperature tolerance is largely contingent on the Symbiodinium types harboured. Few studies have challenged this paradigm as knowledge of other environmental drivers on the distribution of Symbiodinium is limited. Here, we examine the influence of a range of environmental variables on the distribution of Symbiodinium associated with Acropora millepora collected from 47 coral reefs spanning 1,400 km on the Great Barrier Reef (GBR), Australia
Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs
All-atom force fields are important for predicting thermodynamic, structural, and dynamic properties of RNA. In this paper, results are reported for thermodynamic integration calculations of free energy differences of duplex formation when CG pairs in the RNA duplexes r(CCGG)2, r(GGCC)2, r(GCGC)2, and r(CGCG)2 are replaced by isocytidine–isoguanosine (iCiG) pairs. Agreement with experiment was improved when ε/ζ, α/γ, β, and χ torsional parameters in the AMBER99 force field were revised on the basis of quantum mechanical calculations. The revised force field, AMBER99TOR, brings free energy difference predictions to within 1.3, 1.4, 2.3, and 2.6 kcal/mol at 300 K, respectively, compared to experimental results for the thermodynamic cycles of CCGG → iCiCiGiG, GGCC → iGiGiCiC, GCGC → iGiCiGiC, and CGCG → iCiGiCiG. In contrast, unmodified AMBER99 predictions for GGCC → iGiGiCiC and GCGC → iGiCiGiC differ from experiment by 11.7 and 12.6 kcal/mol, respectively. In order to test the dynamic stability of the above duplexes with AMBER99TOR, four individual 50 ns molecular dynamics (MD) simulations in explicit solvent were run. All except r(CCGG)2 retained A-form conformation for ≥82% of the time. This is consistent with NMR spectra of r(iGiGiCiC)2, which reveal an A-form conformation. In MD simulations, r(CCGG)2 retained A-form conformation 52% of the time, suggesting that its terminal base pairs may fray. The results indicate that revised backbone parameters improve predictions of RNA properties and that comparisons to measured sequence dependent thermodynamics provide useful benchmarks for testing force fields and computational methods
- …