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Abstract
Cord blood (CB) has been used as a viable source of hematopoietic stem
cells (HSCs) and hematopoietic progenitor cells (HPCs) in over 35,000
clinical hematopoietic cell transplantation (HCT) efforts to treat the same
variety of malignant and non-malignant disorders treated by bone marrow
(BM) and mobilized peripheral blood (mPB) using HLA-matched or partially
HLA-disparate related or unrelated donor cells for adult and children
recipients. This review documents the beginning of this clinical effort that
started in the 1980’s, the pros and cons of CB HCT compared to BM and
mPB HCT, and recent experimental and clinical efforts to enhance the
efficacy of CB HCT. These efforts include means for increasing HSC
numbers in single CB collections, expanding functional HSCs  , andex vivo
improving CB HSC homing and engraftment, all with the goal of clinical
translation. Concluding remarks highlight the need for phase I/II clinical
trials to test the experimental procedures that are described, either alone or
in combination.
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Background: the beginning of cord blood 
transplantation
Cord blood (CB) is a clinical source of transplantable hematopoi-
etic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) 
for hematopoietic cell transplantation (HCT)1–3. Until the late  
1980’s, the cellular source to treat patients with malignant and 
non-malignant hematopoietic and other disorders by HCT was  
mainly bone marrow (BM). Mobilized peripheral blood  
(mPB), where clinicians utilize known agents (e.g. granulocyte 
colony-stimulating factor4,5 and/or HSC/HPC retention signal  
antagonists such as AMD31006–8) to release high numbers of  
HSCs and HPCs into the bloodstream for easy collection, was 
only in its early stages. In the 1980’s, umbilical CB, usually a  
discarded material except for routine newborn blood tests, was 
studied for HSC and HPC biology in a national collaboration9.  
This scientific work was performed at the Indiana University  
School of Medicine (IUSM). The authors9 demonstrated that 
there were likely enough HSCs and HPCs for CB clinical  
transplantation and tha collected cells could be stored for days 
at room temperature, shipped by overnight express mail to a  
distant site, and cryopreserved for future CB HCT. The first  
proof-of-principle CB storage bank for HLA-matched siblings, 
set up in the Broxmeyer laboratory9,10, led to the first CB HCT  
at the Hôpital St. Louis, Paris, in the transplant center directed 
by Eliane Gluckman as part of an international study11. CB  
cells were collected and sent from a distant obstetric unit to the 
Broxmeyer laboratory, where they were tested, cryopreserved, 
and tested again after thawing of a small separate part of the  
frozen unit before being hand-delivered to Paris for the  
clinical HCT. On 6 October 1988, the CB unit was infused 
into a 6-year-old boy with Fanconi anemia who had been first  
conditioned by a modified regimen specifically for patients 
with Fanconi anemia that had been previously developed by  
Dr. Gluckman, utilizing HLA-matched sibling CB from his  
sister. This first CB HCT11 was curative for the hematological  
manifestations of Fanconi anemia; the recipient is alive 
and well over 31 years later. A total of six more CB HCTs  
were done in Paris, Baltimore, and Cincinnati using HLA  
sibling CB cells cryopreserved in the Broxmeyer laboratory to 
treat Fanconi anemia10,12,13 and juvenile chronic myelogenous  
leukemia (first CB transplant to treat a leukemia)14. Additional 
information on CB HCT has been reported1–3,15,16 and on the  
functionality of CB HSCs and HPCs17–30. Information presented 
in the original scientific paper was produced years in advance  
of the clinical transplant, but the scientific9 and clinical11  
papers were both published in 1989, as we waited until we  
knew the first clinical CB HCT11 was successful before  
submitting the scientific paper9. Cryopreserved CB can be  
stored for at least 23 and a half years18,31,32 with little or no loss 
of HPCs (comparing thawed cells to pre-freeze numbers). CB  
HCT was extended to partially HLA-disparate and unrelated 
donors1–3. Over 35,000 clinical CB HCT procedures have 
been performed to date to treat both children and adults with 
the same malignancies and non-malignancies treated by BM 
HCT. Advantages of CB HCT are ease of collection and  
storage of CB without significant risks for the delivering  
mothers, the ready and quick availability of HLA-typed frozen  
CB units in public and private CB banks (should such units be  
rapidly needed for transplantation), and elicitation of relatively 

low acute and chronic graft versus host disease (GVHD) in  
recipients after CB HCT, even with unrelated partially HLA-
disparate donor cells, compared to that elicited by BM or mPB. 
Problems include fewer HSCs and HPCs in CB collections 
than BM or mPB, in part resulting in delayed engraftment of  
neutrophils, platelets, and immune cells compared to BM and 
especially with mPB. While not life-threatening, this delay in  
engraftment with CB prolongs hospital stays, incurring additional 
health costs3,33.

Efforts to address slower time to donor blood cell recovery 
have focused on ex vivo (in cell culture) expansion of HSCs  
(with the idea and possibility that increased numbers of HSCs 
infused will ameliorate slower time to recovery) or enhancing 
the homing capacity of HSCs to optimize engraftment. Few  
such efforts have been tested in the clinical setting34–40 and only 
in a few selected transplant centers. This review focuses on  
enhancing the efficacy of “limited” numbers of HSCs and 
HPCs in CB collections for CB HCT. A clear distinction must 
be made between phenotypically recognizable and functional 
HSCs and HPCs. There are rigorous criteria to phenotypically 
identify human and mouse HSCs and subsets of HPCs by their 
cell surface proteins, entailing specific antibodies and flow  
cytometry. However, phenotype does not necessarily recapitu-
late functional status. For functional analysis, one must perform  
specific engraftment studies in vivo in mice for mouse and  
human HSCs and colony forming assays in vitro for HPCs41,42. 
Recent information on collection, ex vivo expansion, and  
homing of CB HSCs/HPCs for the potential enhancement of  
CB HCT follows.

Increasing hematopoietic stem cell numbers in single 
cord blood collections
Hypoxia is associated with HSC/HPC functions in these cells’ 
in vivo microenvironment43. A means to enhance the efficacy  
of HCT is through hypoxic collection and processing of HSCs 
such that the collected cells are never exposed to ambient air  
oxygen (~21% oxygen) levels44,45. The BM environment, in  
which HSCs/HPCs reside, has oxygen levels ranging from  
1–5%, with some areas possibly being slightly higher or 
lower depending on proximity to the vasculature46–49. Isolating  
HSCs/HPCs under ambient air (~21% oxygen) exposes these 
cells to hyperoxic conditions, which within minutes decrease  
HSC numbers through the differentiation of HSCs to HPCs and  
not because of HSC cell death44,45. Studies dating from the  
1970’s compared culturing of HSCs and HPCs in low (~5% 
oxygen), in vivo physiological oxygen versus high (~21%  
oxygen) ambient air oxygen. Culturing human and mouse 
BM, human CB, and mouse fetal liver at low oxygen in vitro  
increased numbers of detectable functional HSCs/HPCs50–56. 
When cultured in low oxygen (48 mmHg, 6.8% oxygen), clonal  
growth of granulocyte macrophage progenitors (CFU-GM) 
from mouse BM was enhanced with increased colony numbers  
and size compared to a more conventional oxygen environment 
(135 mmHg, 19% oxygen)50. Culturing erythroid progenitors 
(BFU-E) and more mature erythropoietic precursors (CFU-E) from 
mouse BM or fetal liver at 5% oxygen increased erythropoietin 
sensitivity of cells and CFU-E colony numbers55. Human low-
density CB cells cultured at 5% oxygen had increased CFU-GM, 
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BFU-E, and multipotential progenitors (CFU-GEMM) and were 
readily expanded ex vivo56. Human BM cultured at 5% oxygen  
had increased CFU-GM numbers51. Human BM Lin– CD34+  
CD38– cells (enriched for HSCs) cultured at 1.5% oxygen for  
4 days had more functional SCID repopulating cells (an assay 
for functional human HSCs) than comparable human BM cells  
cultured at 20% oxygen for 4 days (~5.8-fold increase) or  
freshly isolated Lin– CD34+ CD38– cells (~4.2-fold increase)53, 
events associated with stabilization of hypoxia-inducible factor 
(HIF)-1α, increased surface angiogenic receptors, and VEGF  
secretion within cultures.

However, in all of these reports, hematopoietic cells were first 
collected under ambient (~21%) oxygen levels before being  
placed in culture under lower oxygen and thus the collected  
cells were already exposed to extra physiological oxygen stress/
shock (EPHOSS) or hyperoxia, which induces the production of 
mitochondrial reactive oxygen species (ROS), increased HSC  
differentiation, increased functional HPC numbers and cell  
cycling, and increased mitochondrial mass/activity. EPHOSS 
effects are mediated by a p53-cyclophilin D-mitochondria  
permeability transition pore axis and involve HIF-1α and the 
hypoxamir miR-21045. Collecting and processing of mouse BM 
and human CB under low oxygen (3% oxygen, where cells are  
never exposed to ambient air) resulted in ~two- to five-fold  
increases in functional HSC numbers (assessed by engraftment 
in NSG immune-deficient mice) compared to cells collected or  
processed under ambient air44,45. Methods to mimic the effects  
of low oxygen are being examined. Cyclophilin D inhibitor, 
cyclosporin A (CSA, used to alleviate GVHD in human HCT), 
resulted in increased mouse BM and human CB HSC numbers 
and engraftment capability45. However, CSA is difficult to work  
with. It is hard to get into solution and manifests batch-to-batch 
variations so that each batch needs to be titrated. Combinations 
of antioxidants and epigenetic enzyme inhibitors within the  
flush/collection fluids increased numbers of mouse BM HSCs  
with increased engrafting capacity in a competitive in vivo  
assay57, but effects of antioxidants and epigenetic enzyme  
inhibitors have not yet been verified with human CB cells.

Ex vivo expansion of functional hematopoietic stem 
cells
Small molecules, including, but not limited to, diethylaminoben-
zaldehyde (DEAB), LG1506, StemRegenin 1 (SR1), UM171,  
BIO (GSK3β inhibitor), NR-101, trichostatin A (TSA), garcinol 
(GAR), valproic acid (VPA), copper chelator, tetraethyl-
enepentamine, and nicotinamide, are reported agonists for  
experimental ex vivo expansion of human HSCs and HPCs58–65. 
Clinical studies with a few of these small molecules have  
been reported35–40. Verification of these clinical studies will 
take time. SR1 and UM171 are efficient HSC expansion  
compounds58,61. SR1, a purine derivative, was identified in a 
chemical compound screen for candidates promoting ex vivo  
expansion of human HSCs/HPCs58. SR1 binds aryl hydrocarbon 
receptor and antagonizes AhR signaling in CB HSCs/HPCs, but 
the exact molecular mechanisms remain unclear. SR1 has been  
tested in a phase I/II clinical trial40. However, the investigators  
transplanted both SR1-expanded and -unexpanded CB into  
patients, so it is too early to determine if SR1-expanded cells 

contain long-term repopulating HSCs. UM171 promotes ex vivo  
expansion of long-term repopulating HSCs in experimental 
models61, but the clinical trial using UM171 has not yet been  
published.

Mechanisms behind mouse and human HSC expansion may 
be different. Neither SR1 nor UM171 stimulates mouse HSC  
ex vivo expansion58,61. Thus, mouse studies to evaluate these  
molecules are not possible. In contrast, overexpression of  
HOXB4 or co-culturing of recombinant HOXB4 significantly 
promoted the expansion of both human CD34+ and mouse  
HSCs66,67. Activation of OCT4 was found to enhance ex vivo  
expansion of CB HSCs/HPCs by regulating HOXB4 expression68. 
Angiopoietin-like proteins support mouse and human HSC  
expansion in culture69. Overexpression of MSI2, an oncogene, 
antagonizes aryl hydrocarbon receptor signaling and expands 
human HSCs to levels similar to those seen with SR170, even though 
SR1 does not promote mouse HSC expansion71.

Readout of HSC expansion is related to the culture systems 
used, which is one reason why the reproducibility of published  
research may not be easily confirmed. In our experience, 
serum-free medium such as SFEM (StemSpan™ Serum-Free  
Expansion Medium, Catalog #09650, Stemcell Technologies) 
or Stemline (Stemline II HSC expansion medium, Catalog  
#S0192, Sigma-Aldrich) with 100 ng/mL SCF, TPO, and Flt3L 
can efficiently maintain CD34+ HSC and HPC numbers for  
7–10 days. Antagonizing retinoid acid receptor (RAR) or  
PPAR-gamma (PPAR-G) signaling maintains CD34+ CD38– stem 
and progenitor cell populations when CD34+ starting cells are  
cultured in serum and cytokine-containing RPMI-1640 medium, 
thus facilitating the expansion or maintenance of HSCs in  
culture72,73. As SFEM medium is effective in maintaining CD34+ 
CD38– cell populations, RAR or PPAR-G antagonists do not  
further enhance the expansion of human HSC production when 
CD34+ cells are cultured in SFEM medium. PPAR-G expression 
was repressed when CD34+ cells were cultured in SFEM  
medium72,73. Most recently, a simple HSC ex vivo expansion  
method was reported by replacing recombinant human 
serum albumin (HSA) with polyvinyl alcohol (PVA)74. It was  
suggested that potential contaminants in recombinant proteins 
might induce inflammatory responses, thus dampening HSC 
stemness maintenance. By this minor manipulation, the authors  
reported a massive 900-fold enhancement in functional HSC  
numbers after 28-day ex vivo culture74. This incredibly efficient 
expansion system needs to be confirmed by other labs. However, 
such massive increases in functional HSC numbers may not be 
needed for enhancement of CB HCT. A few fold increase in  
these cells may suffice to enhance time to engraftment,  
although the excess expanded cells can be frozen and stored for 
additional CB transplants.

N6-methyladenosine (m6A) modulates the expression of a group 
of messenger (m) RNAs critical for stem cell fate decisions by 
modulating their stability75. Suppressing m6A reader, Ythdf2, 
which promotes targeted decay of mRNA, promotes ex vivo  
expansion of mouse BM and human CB HSCs76. Conditional  
knock-out of mouse Ythdf2 increases functional HSC numbers 
without changing lineage differentiation and without apparent  
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manifestation of hematological malignancies. Knockdown of 
human YTHDF2 resulted in a 10-fold increase in cytokine- 
mediated ex vivo expansion of human CB HSCs, a 5-fold increase 
in HPCs, and a greater than 8-fold increase in serial trans-
plantation76. This was associated with enrichment in mRNAs  
encoding transcription factors in HSCs previously shown to 
be critical for stem cell renewal. This procedure thus targets  
multiple effectors rather than one76,77.

Epigenetic reprogramming using VPA has been utilized to  
experimentally expand human CB HSCs ex vivo59. This required 
the coordination of cellular reprogramming with remodeling of  
mitochondria and activation of p53 that apparently limits ROS 
levels78, which induce HSC differentiation44,45. DEK, a nuclear  
heterochromatin remodeling agent, which can be secreted from 
the cell and act as a cytokine that manifests its effects through  
the chemokine receptor CXCR2 (the only known non-chemokine 
to bind CXCR2), enhances cytokine-mediated ex vivo expansion  
of human CB and mouse BM HSCs and HPCs79.

One challenge for ex vivo expansion is the lack of markers  
labeling functional HSCs during and after ex vivo culture. Some 
signaling pathways might stimulate the expansion of CD34+ 
cells, most of which are progenitors. Markers including CD90 
or CD49f have often been used to isolate HSCs from fresh 
human CB and BM samples. However, CD34+ CD90+ CD49f+  
phenotypic HSCs do not necessarily reflect functional HSCs,  
especially under stress conditions such as ex vivo expansion41. 
The only currently available way to confirm the expansion of  
human HSC numbers is through transplantation using sublethally 
irradiated immune-deficient mice. A logistical problem is that  
ex vivo clinical studies will likely have to be performed in very  
select centers with expertise for these procedures. Also, the  
economics associated with ex vivo expansion must be taken into 
account, as it will likely add significant additional costs to the  
clinical HCT procedure. While it does not appear that  
ex vivo expansion procedures have damaged HSCs or caused  
pre-leukemia/leukemia, anytime HSCs are manipulated ex vivo, 
there is potential for long-term detrimental effects, which 
may involve gene expression pattern changes and epigenetic  
modifications that might result in long-term counter-productive 
outcomes.

During ex vivo expansion, we must also keep in mind the  
different physical characteristics of the in vivo HSC BM niche 
that help maintain HSC homeostasis (e.g. interactions that HSCs  
have with the other cells within their BM niche and lower  
oxygen concentrations within the BM). Taking these factors into 
account, CB HSCs/HPCs have been expanded in the presence 
of mesenchymal stem/stromal cells and have been proven to be  
safe in a clinical study36. In addition, hypoxia culturing (5%  
oxygen) after cells were collected in ambient air potentiated  
ex vivo expansion of CB HSCs/HPCs80.

Although ex vivo expansion is a promising means to overcome  
limited numbers of CB HSCs collected for transplantation, there 
is still much work to be done in this area. More mechanistic  
insight is required regarding the regulation of HSC stemness.

Improving hematopoietic stem cell homing to enhance 
cord blood hematopoietic cell transplantation
After infusion into peripheral blood, HSCs home to the 
BM microenvironment by sensing chemical gradients of  
chemoattractants81. The BM microenvironment provides a unique 
matrix bedding and conducive signaling environment supporting 
long-term engraftment and balances HSC proliferation and  
differentiation82,83. HSC homing is crucial for successful clinic  
outcomes84.

Directing HSC migration and homing from the peripheral  
circulation to the BM involves interactions between chemokine 
ligand CXCL12/stromal cell-derived factor (SDF)-1 and its 
receptor CXCR485,86. CXCL12 is highly expressed by BM  
stromal cells padding the stem cell niche. Gradients of CXCL12 
provide directional cues and orchestrate HSC migration  
towards the BM. CXCR4 is a seven-transmembrane G-protein- 
coupled chemokine receptor expressed on the surface of  
HSCs. Knockouts of CXCL12 or CXCR4 result in severe 
hematopoietic defects87–89. Sphingosine-1-phosphate (S1P) and  
ceramide-1-phosphate (C1P) also provide homing gradients  
guiding HSCs to BM niches90–92. Strategies to enhance HSC  
homing are classified into three categories: regulation from the 
cell membrane, regulation in the cytoplasm, and regulation in  
the nucleus.

Regulation from the cell membrane
The cell membrane is a semi-permeable membrane separating 
the cell from the external environment. The cell membrane  
consists of phospholipid bilayers and many membrane-associated 
proteins, while lipids are fundamental structural elements, and 
proteins are responsible for performing specific membrane  
functions93,94. Lipid rafts are special membrane domains rich in 
glycosphingolipids and cholesterol and have been implicated in  
regulating membrane signaling95,96. Incorporation of CXCR4 
into lipid rafts facilitates the sensing of CXCL12 gradients,  
enhancing homing and engraftment of HSCs97,98. Short-term  
(4-hour) mild heating (39°C) led to elevated membrane lipid 
raft formation, resulting in increased CXCR4 aggregation and  
co-localization with lipid rafts, and promoted human CB HSC  
homing and engraftment in an NSG mouse transplantation  
model99. One report showed a beneficial effect of dimethyl  
sulfoxide (DMSO) treatment on HSC homing, possibly because  
of lower internalization of the surface CXCR4 receptor100.

Another HSC homing regulator found on the cell membrane is 
dipeptidyl peptidase 4 (DPP4). DPP4, also referred to as cell  
surface CD26, a 110 kDa serine protease. It cleaves penultimate 
alanine or proline amino acids at the N-terminus of target sub-
strates including cytokines and chemokines101,102. DPP4 is  
widely expressed in tissues, e.g. liver, spleen, lung, and BM, as 
a membrane-bound form and is also found in serum in soluble  
form. DPP4 is expressed on the surface of HSCs and HPCs, as 
well as on T lymphocytes; it is an important regulator of HSC 
and T cell function101–103 and modulates HSC homing at least in 
part by modifying CXCL12104,105. DPP4 generates a truncated  
form of CXCL12, which is no longer chemotactic but is able to  
block chemotaxis of full-length CXCL12104. Blocking enzymatic 
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activity of DPP4 increases levels of non-truncated CXCL12, 
enhancing HSC homing and engraftment of human CB CD34+ 
cells or mouse BM cells105,106. Sitagliptin, an FDA-approved 
orally active inhibitor of DPP4, has been used to enhance the  
engraftment of single CB transplantation in patients with  
leukemia and lymphoma107–109. Since it was subsequently realized 
that DPP4 truncated a number of other hematopoietic-regulating 
cytokines110, the time to engraftment may have been further 
decreased had sitagliptin been given over more days.

Prostaglandin E2 (PGE
2
) is an important mediator of physi-

ological and pathological systems111,112. Pulse treatment of human  
and murine HSCs with PGE

2
 results in enhanced HSC homing 

and engraftment, mediated through the upregulation of surface  
CXCR4 levels22. A clinical trial evaluating the effects of PGE

2
 

in CB HCT has elicited promising results, with apparently faster  
neutrophil recovery and long-term dominance of the PGE

2
- 

treated CB unit34, but this study was done using PGE
2
-treated 

and -untreated CB. The long-term engrafting capability of the  
PGE

2
-treated cells is unknown. PGE

2
 has four specific  

G-protein-coupled receptors on the cell membrane, EP1–EP4113. 
EP2 and EP4 were involved in the upregulation of CXCR4 and 
CXCL12 expression and promoted HSC migration towards 
CXCL12114. It may be practical to develop better EP2 and EP4 
agonists to further enhance HSC homing and engraftment.  
In an animal model, combining PGE

2
 treatment of donor cells 

and in vivo DPP4 inhibitor demonstrated additive effects on  
enhancing mouse BM engraftment into lethally irradiated  
mice115, suggesting potential enhancement in efficacy by  
combining two different treatment modalities.

Calcium-sensing receptor (CaR) is a cell membrane G-protein- 
coupled receptor mediating cell responses to extracellular  
calcium116. CaR knockout HSCs are defective in adherence 
to the BM microenvironment and fail to engraft after trans-
plantation117. Treatment of murine HSCs with a CaR agonist,  
cinacalcet, led to enhanced HSC homing and engraftment,  
effects mediated through intracellular CXCR4 signaling117.  
CXCR4 mRNA and surface expression remained unaltered, 
so cinacalcet may stimulate enhanced CXCR4 signaling in an  
unconventional manner.

During the homing process, the first early step is considered to 
be HSCs rolling on P-selectins and E-selectins of endothelial  
cells in BM30. P-selectins and E-selectins are C-type lectins  
whose ligands must be properly α1,3-fucosylated to form  
mature glycan determinants. Increasing the levels of cell surface 
fucosylation has been shown to enhance the engraftment of CB 
cells in immunodeficient mice30,118,119. Furthermore, CB units  
were treated with guanosine diphosphate fucose and fucosyl-
transferase-VI to enhance cell surface fucosylation in a clinical  
trial, and the results showed improved engraftment efficiency of 
fucosylated cells27.

Regulation in the cytoplasm
Heme oxygenase 1 (HO-1), an endoplasmic reticulum  
(ER)-anchored enzyme, plays important roles in anti-oxidative 
and inflammatory processes120. HO-1 acts as a negative regulator 
of HSC homing. HO-1 knockout HSCs have enhanced migration 

towards CXCL12 and S1P gradients121. Transient treatment with 
HO-1 inhibitor (SnPP) increased chemotaxis and homing of  
HSCs/HPCs121.

Regulation in the nucleus
The glucocorticoid receptor (GR) is an evolutionarily conserved 
nuclear receptor to which glucocorticoids bind122,123. Upon 
ligand binding, GR is transported into the nucleus and  
functions as a transcriptional factor to activate downstream gene  
transcription, regulating numerous physiological processes. 
Glucocorticoid treatment of human CB HSCs significantly  
elevated surface CXCR4 expression and increased chemotaxis 
towards CXCL12, HSC homing, and engraftment in NSG  
mice123. Activated GR transfers into the nucleus and binds to 
glucocorticoid response elements in the CXCR4 promoter in  
human CB HSCs, followed by recruitment of SRC1/p300  
histone acetyltransferase complex. This promotes histone 
H4K5 and H4K16 acetylation in the CXCR4 promoter region,  
leading to upregulation of CXCR4 transcription. Knockdown 
of SRC1 or p300 suppresses the effects of activated GR on  
CXCR4 surface expression, while inhibition of p300 by a small 
molecule inhibitor, C646, blocks the enhanced homing effects 
of activated GR72, suggesting that activated GR depends on  
histone acetylation to promote HSC homing.

Histone deacetylases (HDACs) are crucial modulators in regu-
lating histone acetylation levels124,125. HDACs remove acetyl 
groups from lysines of target proteins and play important roles in  
physiological processes124. The treatment of human CB HSCs 
with HDAC inhibitors substantially increased surface CXCR4  
expression, improved chemotaxis towards CXCL12, and  
enhanced HSC homing and engraftment126. There are 18 HDAC 
enzymes in mammals, grouped into five subfamilies based on 
sequence similarity (class I, IIa, IIb, III, and IV)127. HDAC5 is 
the one HDAC specifically involved in the regulation of CXCR4  
expression and HSC homing128. HDAC5 inhibition increased 
acetylation levels of histones at the CXCR4 promoter region  
as well as p65 acetylation levels in the nucleus. NF-κB subunit  
p65 is a crucial transcription factor regulating CXCR4 expres-
sion. The acetylation of p65 enhances its DNA-binding activity  
and promotes target gene transcription127–130. Blocking NF-κB 
signaling suppressed the effects of HDAC5 inhibition on  
CXCR4 upregulation and enhanced HSC homing126,128, indicating 
essential roles for NF-κB signaling in regulating HSC homing 
and demonstrating a previously unknown negative regulation  
of HSC homing by HDAC5.

HIF-1α, a DNA-binding transcriptional factor, mediates cel-
lular responses to hypoxia43,129. HIF-1α is important during 
animal development and for energy metabolism. The BM  
microenvironment, where HSCs reside, is hypoxic43. HIF-1α 
is stabilized in HSCs and regulates HSC activity/quiescence131,132. 
Pharmacological increases in HIF-1α promote HSC hom-
ing and engraftment also by upregulating surface CXCR4  
expression133. CXCR4 expression upregulation results from  
HIF-1α binding with hypoxia response elements, located at  
–1.3 kb from the transcription start site of the CXCR4  
promoter region. Caffeic acid phenethyl ester (CAPE) treat-
ment promotes HSC homing and engraftment by inducing the  
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expression of HIF-1α. CAPE administration upregulates  
HIF-1α protein levels and CXCL12 in BM endothelial cells and  
inhibition of HIF-1α by PX-478 suppresses CAPE-mediated 
enhanced HSC homing, further supporting the notion that  
HIF-1α is important during HSC homing and engraftment.

The above-mentioned approaches for homing range from the 
cell membrane (lipid rafts, DPP4, EP2 and EP4, and CaR) to  
the cytoplasm (HO-1) and inside the nucleus (GR, HDAC5, and 
HIF-1α). Which procedure would be the best to be tested in a 
clinical setting needs to be determined. Perhaps combinations 
of approaches can further increase the homing and engraftment 
of HSCs. It may be that short-term treatment of donor CB units 
for about 16 hours may provide significant enhancement for  
engraftment in the setting of CB HCT, possibly negating the  
necessity for ex vivo expansion efforts. Alternatively, it may 
be that the CB cells do not have to be pretreated ex vivo prior to  
infusion into the patient but rather that the cells can be infused  
into the patient who is then given the reagents in vivo to enhance 
the homing/engrafting capability of the infused cells. It is also  
possible that ex vivo expanded HSCs may better engraft if it  
turns out that homing of expanded HSCs is suboptimal and can be 
enhanced.

Concluding remarks
Enhancing CB HCT efficacy will not only reduce the time of 
donor cell recovery but also make it possible to use more banked  
CB units that contain fewer HSCs/HPCs. There are a number 
of new ways to potentially enhance the efficacy of CB HCT134. 
However, most are laboratory efforts. How to get these new  
methods into clinical trials is a problem that needs to be solved. 
We believe that simpler is always better. The simpler the  
procedure, the more likely that it will be clinically translated.  
There are just not enough clinical CB HCTs available to set 
up phase I/II clinical trials to test these new procedures. Most  
investigators doing such trials are “wed” to their personal  
favorite procedure. If, in the future, we can deal with this  
problem and find means for additional clinical efforts, it is  
possible that several new procedures can be used together134.  
This, however, adds additional logistical problems versus the 
use of one procedure. Clinical trials are costly, and it is not 
clear where the money to pursue such trials will come from, 
or even if they can be supported at all, since current trials are 
funded by companies to test their own products. A gathering 
of interested scientists and clinical investigators who can 
think-tank this problem is desperately needed and strongly  
encouraged.
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