5,479 research outputs found
Application of effect-based methods (EBMs) in a river basin: a preliminary study in Central Italy
Introduction. Effect-based methods (EBMs), i.e. in vitro and in vivo bioassays, represent innovative tools for the effect detection of environmental chemical pollutants on living organisms. The aim of this study was to evaluate the water quality of a river ecosystem implementing two in vivo bioassays on target freshwater animal species: the crustacean Daphnia magna and the small fish Danio rerio, also known as zebrafish. Materials and methods. The methods applied in this study, i.e. the Daphnia sp. Acute Immobilisation assay and the Fish Embryo Acute Toxicity (FET) test, are commonly used in water quality research and their application in short-term ecotoxicity detection is suggested by recent European projects. Two sampling sites were chosen in the urban part of the Tiber River in Rome, while a third one was chosen as a reference site in the Farfa River, a tributary upstream of the city. The sites in the Tiber River are potentially affected by different pollution sources, including urban and industrial wastewater discharges, the pesticide release, livestock waste products, and waste dumps. Results and discussion. The results of the study showed wide differences between the two applied bioassays. The FET test was generally more sensitive in detecting even low effects in all the water samples, but the strongest statistically results were observed with the D. magna Acute Immobilisation test. The results of this research confirm the effectiveness of EBMs in investigating and monitoring water chemical pollution, and stress the need for performing further studies, e.g. chemical analyses and other bioassays, to improve the knowledge of the health status of the Tiber River basin. Conclusions. Further results will aim to support the local authorities in adopting measures to reduce and to eliminate the sources of chemical pollution in the study area
Milk somatic cell count, lactate dehydrogenase activity, and immunoglobulin G concentration associated with mastitis caused by different pathogens: a field study
The aim of this study is to analyze how somatic cell counts (SCC), immunoglobulin G (IgG), and lactate dehydrogenase (LDH) interact dependent on the mastitis causing pathogen. Milk samples from 152 quarters were collected on 2 Swiss dairy farms equipped with automatic milking systems. Bacteriological culturing was performed and SCC, LDH activity and IgG concentrations were measured in each sample. Correlations and regressions among SCC, LHD, and IgG were calculated after grouping by the pathogen type (control, S. aureus, C. bovis, coagulase-negative Staphylococcus and S. uberis). All the mastitis causing pathogens were gram-positive bacteria (except for 3 cases with E. coli). In this study, the SCC and LDH were affected by the pathogen group. However, only in the S. uberis group the IgG concentration was higher than in the controls. All studied variables were positively correlated among each other. SCC and LDH were the highest correlated parameters in the control, S. aureus, C. bovis and coagulase- negative Staphylococcus groups. Only in the S. uberis group the correlation between LDH and IgG was higher than the correlation between SCC and LDH. The regression coefficients for SCC and LDH differed between groups whereas regression coefficients for SCC and IgG, and for LDH and IgG were similar in all groups. Because cases with E. coli infection were so rare, we could not include these cases in the statistical evaluation. Based on these few cases E. coli (n=3) seemed to cause a much higher increase of IgG and LDH than the infection with gram-positive bacteria. This study shows that the suitability of LDH as a marker for IgG transfer is dependent on the pathogen. The use of LDH in combination with SCC may be used as a marker to differentiate between gram-positive and gram-negative bacteria, but does not allow differentiating the immune response between different gram-positive bacteria
Kids in Communities Study (KiCS) study protocol: a cross-sectional mixed-methods approach to measuring community-level factors influencing early child development in Australia
Introduction: Healthy childhood development in the early years is critical for later adult health and well-being. Early childhood development (ECD) research has focused primarily on individual, family and school factors, but largely ignored community factors. The Kids in Communities Study (KiCS) will test and investigate community-level influences on child development across Australia. Methods and analysis: Cross-sectional mixed-methods study exploring community-level effects in 25 Australian local communities; selection based on community socioeconomic status (SES) and ECD using the Australian Early Development Census (AEDC), a population measure of child development, to create a local community 'diagonality type', that is, those performing better or worse (off-diagonal), or as expected (on-diagonal) on the AEDC relative to their SES. Data collection includes stakeholder interviews, parent and service provider focus groups, and surveys with general community residents and service providers, mapping of neighbourhood design and local amenities and services, analysis of policy documents, and the use of existing sociodemographic and early childhood education and care data. Quantitative data will be used to test associations between local community diagonality type, and ECD based on AEDC scores. Qualitative data will provide complementary and deeper exploration of these same associations. Ethics and dissemination: The Royal Children's Hospital Human Research Ethics Committee approved the study protocol (#30016). Further ethics approvals were obtained from State Education and Health departments and Catholic archdioceses where required. ECD community-level indicators will eventually be derived and made publically available. Findings will be published in peer-reviewed journals, community reports, websites and policy briefs to disseminate results to researchers, and key stakeholders including policymakers, practitioners and (most importantly) the communities involved.Sharon Goldfeld, Karen Villanueva, Robert Tanton, Ilan Katz, Sally Brinkman, Geoffrey Woolcock, Billie Giles-Cort
Geosite assessment and communication: a review
This work is aimed at reviewing the current state of the art in geosite selection, assessment, and communication. We first highlight the main papers that have defined paramount concepts such as geodiversity, geoheritage, and geosites. We then delve into the theoretical principles and guidelines that have been proposed over the last twenty years by researchers who have thoroughly illustrated how to individuate and assess geosites. In doing so, we illustrate notable field examples of applications of qualitative and quantitative assessments of geosites in places such as Serbia, India, Iceland, Ecuador, Sardinia (Italy), Egypt, Tasmania (Australia), and Brazil. The third part of this work is dedicated to illustrating a list (by no means exhaustive) of works that have tried to come up with innovative tools, strategies, and solutions to promote and communicate geosites. From our work, it appears that geosites can be extremely effective as fully fledged outreach tools capable of bridging the gap between Earth science and the lay public
Nonmonotonical crossover of the effective susceptibility exponent
We have numerically determined the behavior of the magnetic susceptibility
upon approach of the critical point in two-dimensional spin systems with an
interaction range that was varied over nearly two orders of magnitude. The full
crossover from classical to Ising-like critical behavior, spanning several
decades in the reduced temperature, could be observed. Our results convincingly
show that the effective susceptibility exponent gamma_eff changes
nonmonotonically from its classical to its Ising value when approaching the
critical point in the ordered phase. In the disordered phase the behavior is
monotonic. Furthermore the hypothesis that the crossover function is universal
is supported.Comment: 4 pages RevTeX 3.0/3.1, 5 Encapsulated PostScript figures. Uses
epsf.sty. Accepted for publication in Physical Review Letters. Also available
as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm
Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model
Given paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) may affect the global climate system, we conduct model experiments with EC-Earth3, a state-of-the-art GCM, to specifically investigate, for the first time, mechanisms of precipitation change over the Euro-Atlantic sector induced by a weakened AMOC. We artificially weaken the strength of the AMOC in the model through the release of a freshwater anomaly into the Northern Hemisphere high latitude ocean, thereby obtaining a similar to 57% weaker AMOC with respect to its preindustrial strength for 60 model years. Similar to prior studies, we find that Northern Hemisphere precipitation decreases in response to a weakened AMOC. However, we also find that the frequency of wet days increases in some regions. By computing the atmospheric moisture budget, we find that intensified but drier storms cause less precipitation over land. Nevertheless, changes in the jet stream tend to enhance precipitation over northwestern Europe. We further investigate the association of precipitation anomalies with large-scale atmospheric circulations by computing weather regimes through clustering of geopotential height daily anomalies. We find an increase in the frequency of the positive phase of the North Atlantic Oscillation (NAO+), which is associated with an increase in the occurrence of wet days over northern Europe and drier conditions over southern Europe. Since a similar to 57% reduction in the AMOC strength is within the inter-model range of projected AMOC declines by the end of the twenty-first century, our results have implications for understanding the role of AMOC in future hydrological changes
Offscreen and in the chair next to your: conversational agents speaking through actual human bodies
his paper demonstrates how to interact with a conversational agent that speaks through an actual human body face-to-face and in person (i.e., offscreen). This is made possible by the cyranoid method: a technique involving a human person speech shadowing for a remote third-party (i.e., receiving their words via a covert audio-relay apparatus and repeating them aloud in real-time). When a person shadows for an artificial conversational agent source, we call the resulting hybrid an “echoborg.” We report a study in which people encountered conversational agents either through a human shadower face-to-face or via a text interface under conditions where they assumed their interlocutor to be an actual person. Our results show that the perception of a conversational agent is dramatically altered when the agent is voiced by an actual, tangible person. We discuss the potential implications this methodology has for the development of conversational agents and general person perception research
The sensitivity of Euro-Atlantic regimes to model horizontal resolution
There is growing evidence that the atmospheric dynamics of the Euro-Atlantic sector during winter is driven in part by the presence of quasi-persistent regimes. However, general circulation models typically struggle to simulate these with, for example, an overly weakly persistent blocking regime. Previous studies have showed that increased horizontal resolution can improve the regime structure of a model but have so far only considered a single model with only one ensemble member at each resolution, leaving open the possibility that this may be either coincidental or model dependent. We show that the improvement in regime structure due to increased resolution is robust across multiple models with multiple ensemble members. However, while the high-resolution models have notably more tightly clustered data, other aspects of the regimes may not necessarily improve and are also subject to a large amount of sampling variability that typically requires at least three ensemble members to surmount
Evaluation of a geometry-based knee joint compared to a planar knee joint
peer reviewedToday neuromuscular simulations are used in sev- eral fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. Dur- ing the last year, new models and datasets have been pre- sented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field ofmusculoskeletal simulations, no such knee joints can be used. Instead themost common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle ac- tivation and joint reaction forces which are compared to in- vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction forces
- …