141 research outputs found

    Commissioning of the tracer-encapsulated solid pellet (TESPEL) injection system for Wendelstein 7-X and first results for OP1.2b

    Get PDF
    A new tracer-encapsulated solid pellet (TESPEL) injection system was successfully commissioned for the stellarator fusion experiment Wendelstein 7-X (W7-X) during its OP1.2b operational campaign. TESPELs are polystyrene encapsulated solid pellets loaded with tracer impurities that have been employed in other stellarator devices for impurity transport studies. During the OP1.2b campaign approximately 140 pellet injections were performed with a successful delivery rate of 89%, thus this system has proven to be very reliable. Here, the experimental set-up and methodology are described first. In addition, it is outlined how, through the analysis of TESPEL time-of-flight signals and of the temporal evolution of line emissions originating from shell and tracer species as well as comparisons with ablation models, the radial localization of the deposited tracer is determined. This contribution also provides a general overview of the TESPEL injector performance during OP1.2b, discusses the global effects of TESPEL injections on W7-X plasmas and reports on first results in terms of a summary of TESPEL injections, plasma response to TESPELs, the post-deposition evolution of tracer spectral emission lines and soft x-ray emissions

    Efficacy of an Extracorporeal Endotoxin Adsorber System during Hyperdynamic Porcine Endotoxemia

    Get PDF
    Background: Endotoxemia is a crucial factor in the pathogenesis of sepsis. Elimination of endotoxin is aimed at the reduction of sepsis-related morbidity and lethality. The objective of this study was to examine the impact of an endotoxin adsorber on hemodynamics, O2 exchange and metabolism during resuscitated porcine endotoxemia. Methods: Twenty pigs were randomized into 2 intervention groups (n = 7 each) and 1 control group (n = 6). Endotoxemia was induced by continuous intravenous application of lipopolysaccharide for 8 h. Adsorber therapy was started at the same time as the induction of endotoxemia or 2 h later. An extracorporeal hemoperfusion device using immobilized human serum albumin for endotoxin adsorption was used. Results: Hemodynamic, metabolic and acid-base parameters, as well as the kinetics of interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor-α, were characteristic for endotoxic shock. Endotoxin plasma levels were low (arterial, hepatic and portal vein). None of the parameters were significantly influenced by the adsorber system. Conclusion: Despite typical clinical signs of endotoxemia, the adsorber system had no significant effect on hemodynamic, metabolic and acid-base parameters during endotoxic shock. The reasons for the absence of an effect are elusive; however, failure of the method per se or exceeded capacity of the adsorber cannot be excluded

    The AWAKE Run 2 Programme and beyond

    Get PDF
    Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.info:eu-repo/semantics/publishedVersio

    Achieving stationary high performance plasmas at Wendelstein 7-X

    Get PDF
    This work reports on recent results on the search for high performance plasma scenarios at the magnetically confined stellarator fusion device Wendelstein 7-X. In four new designed scenarios, the development from transient toward stationary plasmas of improved performance has been realized. In particular, a high performance duration of up to 5 s, an energy confinement time of 0.3 s, a diamagnetic energy of 1.1 MJ, a central ion temperature of 2.2 keV, and a fusion triple product of 3:4 1019 m3 keV s have been achieved, and previously observed limitations of the machine have been overcome, regarding both the performance and its duration. The two main experimental techniques for stationary high performance are neutral beam injection core fueling on the one hand and the use of a magnetic field configuration with internal islands on the other hand. Two of the developed scenarios are expected to be extendable straightforward toward a duration of several tens of seconds, making use of the long pulse operation capabilities of W7-X
    corecore