166 research outputs found

    X-ray and gamma-ray line production by nonthermal ions

    Get PDF
    X-ray production was calculated at approximately 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation. A refinement of the OBK approximation was used to obtain an improved charge exchange cross section. This, and the corresponding ionization cross section were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV/amu. Because fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma ray line emissivities to the X-ray line emissivity was also calculated. Limits set by this method on the intensity of gamma ray line emission from the galactic center and the radio galaxy Centaurus A are generally lower than those reported in the literature

    A Comment on "The Far Future of Exoplanet Direct Characterization" - the Case for Interstellar Space Probes

    Full text link
    Following on from ideas presented in a recent paper by Schneider et al. (2010) on "The Far Future of Exoplanet Direct Characterization", I argue that they have exaggerated the technical obstacles to performing such 'direct characterization' by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something which will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of 'show stopper' suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.Comment: Accepted for publication in Astrobiolog

    Unstable states in QED of strong magnetic fields

    Get PDF
    We question the use of stable asymptotic scattering states in QED of strong magnetic fields. To correctly describe excited Landau states and photons above the pair creation threshold the asymptotic fields are chosen as generalized Licht fields. In this way the off-shell behavior of unstable particles is automatically taken into account, and the resonant divergences that occur in scattering cross sections in the presence of a strong external magnetic field are avoided. While in a limiting case the conventional electron propagator with Breit-Wigner form is obtained, in this formalism it is also possible to calculate SS-matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2

    Analysis of antigenic relationships among influenza virus strains using a taxonomic cluster procedure. Comparison of three kinds of antibody preparations.

    Get PDF
    Hemagglutination inhibiting (HI) monoclonal antibody preparations (MA) were raised against six influenza A (H3N2) strains from the period 1977-1982. Twenty-three hybridomas were selected and titrated in HI assays against these strains and against 18 influenza A (H3N2) viruses isolated in The Netherlands during the seasons 1981-1982 and 1982-1983. Similar HI tests were performed with conventional post-infection ferret antisera and with ferret antisera adsorbed with heterologous strains of influenza A (H3N2) virus. The resulting serological data were subjected to a computerized taxonomic cluster procedure based on the Euclidean distance between viruses. With respect to the degree of separation between clusters the unadsorbed ferret antisera were inferior to the adsorbed antisera whereas the MA were superior to both. Our results demonstrate that computer programs based on numerical taxonomy can be helpful in processing large numbers of serological data and that MA are indispensable in epidemiological and diagnostic influenza studies

    Private and Secure Public-Key Distance Bounding: Application to NFC Payment

    Get PDF
    Distance-Bounding is used to defeat relay attacks. For wireless payment systems, the payment terminal is not always online. So, the protocol must rely on a public key for the prover (payer). We propose a generic transformation of a (weakly secure) symmetric distance bounding protocol which has no post-verification into wide-strong-private and secure public-key distance bounding

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    BVRI Light Curves for 29 Type Ia Supernovae

    Get PDF
    BVRI light curves are presented for 27 Type Ia supernovae discovered during the course of the Calan/Tololo Survey and for two other SNe Ia observed during the same period. Estimates of the maximum light magnitudes in the B, V, and I bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author if needed), to appear in the Astronomical Journa

    Dichromatic dark matter

    Get PDF
    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.University of Wisconsin--Madison (Start-up funds)SLAC National Accelerator Laboratory (US DOE contract DE-AC02-76SF00515)Aspen Center for Physics (NSF Grant No. 1066293)United States. National Aeronautics and Space Administration (Einstein Postdoctoral Fellowship grant number PF2-130102)Smithsonian Astrophysical Observatory (Chandra X-ray Center, NASA under contract NAS8-03060

    Gamma-Ray Burst Energy Spectra: Theoretical Models, Old and New

    Get PDF
    The modelling of gamma-ray burst (GRB) spectra has considerable potential for increasing the understanding of these enigmatic sources. A diversity of ideas and analyses has been generated over the last two decades to explain line features and continuum shapes, encompassing both older galactic neutron star and ``new age'' cosmological source models. This paper reviews some of the highlights of these studies, discussing the merits and limitations of various ideas, and in particular their compatibility with the observational data. The first focus will be on continuum models for GRBs, which include optically thin synchrotron emission and resonant Compton upscattering near galactic neutron stars, while the synchrotron and non-magnetic inverse Compton scattering mechanisms are prominent in the less well-developed cosmological scenarios. Line formation scenarios will then be discussed, in particular the scattering model for producing cyclotron features, which remains the only viable explanation for the Ginga observations of double lines. Absorption-like line production in cosmological burst models is generally difficult, though interesting notions such as femtolensing interference patterns have been proffered.Comment: 8 pages with no figures, as a compressed, uuencoded, Postscript file. Invited review, to appear in Astrophysics and Space Science as part of the proceedings of the 29th ESLAB Symposium ``Towards the Source of Gamma-Ray Bursts'' held in Noordwijk, 199
    • …
    corecore