1,645 research outputs found
On the equivalence between topologically and non-topologically massive abelian gauge theories
We analyse the equivalence between topologically massive gauge theory (TMGT)
and different formulations of non-topologically massive gauge theories (NTMGTs)
in the canonical approach. The different NTMGTs studied are St\"uckelberg
formulation of (A) a first order formulation involving one and two form fields,
(B) Proca theory, and (C) massive Kalb-Ramond theory. We first quantise these
reducible gauge systems by using the phase space extension procedure and using
it, identify the phase space variables of NTMGTs which are equivalent to the
canonical variables of TMGT and show that under this the Hamiltonian also get
mapped. Interestingly it is found that the different NTMGTs are equivalent to
different formulations of TMGTs which differ only by a total divergence term.
We also provide covariant mappings between the fields in TMGT to NTMGTs at the
level of correlation function.Comment: One reference added and a typos corrected. 15 pages, To appear in
Mod. Phys. Lett.
Poisson-Lie T-Duality and Supersymmetry
We review aspects of Poisson-Lie T-duality which we explicitly formulate as a
canonical transformation on the world-sheet. Extensions of previous work on
T-duality in relation to supersymmetry are also discussed. (Contribution to the
proceedings of the 30th International Symposium Ahrenshoop on the Theory of
Elementary Particles, Buckow, Germany, 26-31 August 1996)Comment: 12 pages, late
N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models
We study N=2 nonlinear two dimensional sigma models with boundaries and their
massive generalizations (the Landau-Ginzburg models). These models are defined
over either Kahler or bihermitian target space manifolds. We determine the most
general local N=2 superconformal boundary conditions (D-branes) for these sigma
models. In the Kahler case we reproduce the known results in a systematic
fashion including interesting results concerning the coisotropic A-type branes.
We further analyse the N=2 superconformal boundary conditions for sigma models
defined over a bihermitian manifold with torsion. We interpret the boundary
conditions in terms of different types of submanifolds of the target space. We
point out how the open sigma models correspond to new types of target space
geometry. For the massive Landau-Ginzburg models (both Kahler and bihermitian)
we discuss an important class of supersymmetric boundary conditions which
admits a nice geometrical interpretation.Comment: 48 pages, latex, references and minor comments added, the version to
appear in JHE
Differential geometry with a projection: Application to double field theory
In recent development of double field theory, as for the description of the
massless sector of closed strings, the spacetime dimension is formally doubled,
i.e. from D to D+D, and the T-duality is realized manifestly as a global O(D,D)
rotation. In this paper, we conceive a differential geometry characterized by a
O(D,D) symmetric projection, as the underlying mathematical structure of double
field theory. We introduce a differential operator compatible with the
projection, which, contracted with the projection, can be covariantized and may
replace the ordinary derivatives in the generalized Lie derivative that
generates the gauge symmetry of double field theory. We construct various gauge
covariant tensors which include a scalar and a tensor carrying two O(D,D)
vector indices.Comment: 1+22 pages, No figure; a previous result on 4-index tensor removed,
presentation improve
An Equivalence Between Momentum and Charge in String Theory
It is shown that for a translationally invariant solution to string theory,
spacetime duality interchanges the momentum in the symmetry direction and the
axion charge per unit length. As one application, we show explicitly that
charged black strings are equivalent to boosted (uncharged) black strings. The
extremal black strings (which correspond to the field outside of a fundamental
macroscopic string) are equivalent to plane fronted waves describing strings
moving at the speed of light.Comment: 10 page
Commentary CeNTech:nanotechnological research and application
The Centre for Nanotechnology (CeNTech), Münster, Germany, represents one of the first dedicated nanotechnology centres in Germany providing space and infrastructure for application, research and development in the area of nanotechnology. It offers an optimised environment for entrepreneurs to fur-ther develop their research ideas into marketable products as well as excellent conditions for application ori-ented research and further education. Three years after the opening of the CeNTech building most of the ex-pectations are fulfilled. The article describes the general aspects of the CeNTech concept and reviews its de-velopment in the first years
Non-abelian T-duality, Ramond Fields and Coset Geometries
We extend previous work on non-abelian T-duality in the presence of Ramond
fluxes to cases in which the duality group acts with isotropy such as in
backgrounds containing coset spaces. In the process we generate new
supergravity solutions related to D-brane configurations and to standard
supergravity compactifications.Comment: 35 pages, Late
Gravitational instantons and black plane solutions in 4-d string theory
We consider gauged Wess-Zumino models based on the non compact group
. It is shown that by vector gauging the maximal compact subgroup
the resulting backgrounds obey the gravity-dilaton one loop string
vacuum equations of motion in four dimensional euclidean space. The torsionless
solution is then interpreted as a pseudo-instanton of the Liouville
theory coupled to gravity. The presence of a traslational isometry in the model
allows to get another string vacuum backgrounds by using target duality that we
identify with those corresponding to the axial gauging. We also compute the
exact backgrounds. Depending on the value of , they may be interpreted as
instantons connecting a highly singular big bang like universe with a static
singular or regular black plane geometry.Comment: 29 page
- …