590 research outputs found

    Verifying the Safety of a Flight-Critical System

    Full text link
    This paper describes our work on demonstrating verification technologies on a flight-critical system of realistic functionality, size, and complexity. Our work targeted a commercial aircraft control system named Transport Class Model (TCM), and involved several stages: formalizing and disambiguating requirements in collaboration with do- main experts; processing models for their use by formal verification tools; applying compositional techniques at the architectural and component level to scale verification. Performed in the context of a major NASA milestone, this study of formal verification in practice is one of the most challenging that our group has performed, and it took several person months to complete it. This paper describes the methodology that we followed and the lessons that we learned.Comment: 17 pages, 5 figure

    Pollen viability, germination and pollination in Myristica fatua Houtt. var. magnifica (Beddome) Sinclair - a threatened taxon of Western Ghats, India

    Get PDF
    A study of anthesis, pollen viability and pollination in Myristica fatua var. magnifica showed that anthesis took place early in the morning and anther dehiscence about 36-48 h prior to anthesis. The pollen grains held inside the flower get released as a cloud at the time of anthesis. Male flowers are shed 36-48 h after anthesis. The pollen grains are sticky, pilated in sculpture, spherical and without any visible aperture. Pollen germination commenced 2 h after dusting the grains on slides containing sucrose solution and was completed in about 6 h. Maximum germination (67.3 per cent) was obtained in 5% sucrose solution and the length of pollen tube was also maximum in this concentration. The stained and unstained pollen grains varied in size and the former measured more than the latter. The viability of freshly collected pollen as determined by their stainability in acetocarmine was 94.3 per cent. Among the 10 species of insects collected from trees during flowering, Cremastogaster sp., Sima nigra and Syrphissp. were most common. &nbsp

    Galectin-3 expression is ubiquitous in tumors of the sellar region, nervous system, and mimics - An immunohistochemical and RT-PCR study

    Get PDF
    Galectin-3 expression has been reported in spindle cell oncocytoma, certain pituitary adenoma subtypes, astrocytomas, oligodendrogliomas, and meningiomas. We evaluated galectin-3 protein expression by immunohistochemistry in 201 cases of a variety of nervous system and sellar tumors, as well as mRNA expression by reverse transcription-polymerase chain reaction in formalin-fixed paraffin-embedded tissue in a subset (20 cases). Immunohistochemical results were evaluated in a semiquantitative fashion on a 4-tiered scale (0 to 3). Strong (3+) immunoreactivity was seen in most of the cases (61%), followed by 2+(22%), and 1+(13%) staining. Only 4% of the lesions studied were immunonegative. Galectin-3 mRNA was present in 15 of the 18 cases (83%) in which reverse transcription-polymerase chain reaction was successful. Significant differences in protein expression were noted in the following 2 settings: specific meningioma subtypes (P=0.004, Fisher exact test) wherein clear cell meningioma demonstrated weak protein expression when compared with other meningioma variants. No significant difference was noted with respect to World Health Organization grade. Galectin-3 was also strongly expressed in benign nerve sheath tumors but only moderately expressed in malignant peripheral nerve sheath tumors (P=0.0009, Fisher exact test). Although galectin-3 positivity is a key feature of the immunophenotype of spindle cell oncocytoma, its consistent expression in other morphologically similar tumors (meningioma, pituicytoma, nerve sheath tumors, granular cell tumor, metastases) makes it of little use in the differential diagnosis of sellar region tumors, a setting in which it should be discouraged. Diagnostic uses of this marker may be limited to specific settings, including some meningioma subtypes and nerve sheath tumors

    A highly invasive human glioblastoma pre-clinical model for testing therapeutics

    Get PDF
    Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM) mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino)-17-demethoxy geldanamycin (17AAG). Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM) to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2). These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Activating mutations of the GNAQ gene: a frequent event in primary melanocytic neoplasms of the central nervous system

    Get PDF
    Primary melanocytic neoplasms of the central nervous system (CNS) are uncommon neoplasms derived from melanocytes that normally can be found in the leptomeninges. They cover a spectrum of malignancy grades ranging from low-grade melanocytomas to lesions of intermediate malignancy and overtly malignant melanomas. Characteristic genetic alterations in this group of neoplasms have not yet been identified. Using direct sequencing, we investigated 19 primary melanocytic lesions of the CNS (12 melanocytomas, 3 intermediate-grade melanocytomas, and 4 melanomas) for hotspot oncogenic mutations commonly found in melanocytic tumors of the skin (BRAF, NRAS, and HRAS genes) and uvea (GNAQ gene). Somatic mutations in the GNAQ gene at codon 209, resulting in constitutive activation of GNAQ, were detected in 7/19 (37%) tumors, including 6/12 melanocytomas, 0/3 intermediate-grade melanocytomas, and 1/4 melanomas. These GNAQ-mutated tumors were predominantly located around the spinal cord (6/7). One melanoma carried a BRAF point mutation that is frequently found in cutaneous melanomas (c.1799 T>A, p.V600E), raising the question whether this is a metastatic rather than a primary tumor. No HRAS or NRAS mutations were detected. We conclude that somatic mutations in the GNAQ gene at codon 209 are a frequent event in primary melanocytic neoplasms of the CNS. This finding provides new insight in the pathogenesis of these lesions and suggests that GNAQ-dependent mitogen-activated kinase signaling is a promising therapeutic target in these tumors. The prognostic and predictive value of GNAQ mutations in primary melanocytic lesions of the CNS needs to be determined in future studies

    Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-κB

    Get PDF
    Although cyclophilin A (CypA) has been reported to be over-expressed in cancer cells and solid tumors, its expression and role in glioblastomas have not been studied. Herein, we show that expression of CypA in human glioblastoma cell lines and tissues is significantly higher than in normal human astrocytes and normal counterparts of brain tissue. To determine the role of over-expressed CypA in glioblastoma, stable RNA interference (RNAi)-mediated knockdown of CypA (CypA KD) was performed in gliobastoma cell line U87vIII (U87MG · ΔEGFR). CypA KD stable single clones decrease proliferation, infiltration, migration, and anchorage-independent growth in vitro and with slower growth in vivo as xenografts in immunodeficient nude mice. We have also observed that knockdown of CypA inhibits expression of interleukin-8 (IL-8), a tumorigenic and proangiogenic cytokine. Conversely, enforced expression of CypA in the CypA KD cell line, Ud-12, markedly enhanced IL-8 transcripts and restored Ud-12 proliferation, suggesting that CypA-mediated IL-8 production provides a growth advantage to glioblastoma cells. CypA knockdown-mediated inhibition of IL-8 is due to reduced activity of NF-κB, which is one of the major transcription factors regulating IL-8 expression. These results not only establish the relevance of CypA to glioblastoma growth in vitro and in vivo, but also suggest that small interfering RNA-based CypA knockdown could be an effective therapeutic approach against glioblastomas

    Development and characterization of a microfluidic model of the tumour microenvironment

    Get PDF
    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening
    corecore