124 research outputs found
Identification of a Bacterial-Like HslVU Protease in the Mitochondria of Trypanosoma brucei and Its Role in Mitochondrial DNA Replication
ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms
Chromothripsis in acute myeloid leukemia: Biological features and impact on survival
Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix\uae) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology
Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death
The ATP-dependent ClpQY protease system in Plasmodium falciparum is a prokaryotic machinery in the parasite. In the present study, we have identified the complete ClpQY system in P. falciparum and elucidated its functional importance in survival and growth of asexual stage parasites. We characterized the interaction of P. falciparum ClpQ protease (PfClpQ) and PfClpY ATPase components, and showed that a short stretch of residues at the C terminus of PfClpY has an important role in this interaction; a synthetic peptide corresponding to this region antagonizes this interaction and interferes with the functioning of this machinery in the parasite. Disruption of ClpQY function by this peptide caused hindrance in the parasite growth and maturation of asexual stages of parasites. Detailed analyses of cellular effects in these parasites showed features of apoptosis-like cell death. The peptide-treated parasites showed mitochondrial dysfunction and loss of mitochondrial membrane potential. Dysfunctioning of mitochondria initiated a cascade of reactions in parasites, including activation of VAD–FMK-binding proteases and nucleases, which resulted in apoptosis-like cell death. These results show functional importance of mitochondrial proteases in the parasite and involvement of mitochondria in programmed cell death in the malaria parasites
Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities
The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections
Tumour Cell Heterogeneity.
The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment
Use of green fluorescent protein for the analysis of protein-protein and protein-DNA interactions
Restriction modification (RM) systems play a crucial role in preventing the
entry of foreign DNA into the bacterial cell. The best studied Type I RM system is
EcoKI from Escherichia coli K12. Both bacteriophage and conjugative plasmids
have developed a variety of strategies to circumvent the host RM system. One such
strategy involves the production of antirestriction proteins that mimic a short
segment of DNA and efficiently inhibit the RM system. The main aim of this project
was to analyse the interaction of EcoKI and its cognate methylase (MTase) with the
T7 antirestriction protein, known as overcome classical restriction (Ocr), and various
ArdA antirestriction proteins. Currently, there is a paucity of structural data on the
complex formed between the Type I system and the antirestriction proteins. The aim
of this work was twofold; (i) compare the interaction of MTase with DNA and Ocr
and (ii) quantify the strength of interaction between MTase and various ArdA
proteins.
The MTase was fused to the Green Fluorescent Protein (GFP) to facilitate
determination of the orientation of interaction with DNA and Ocr. Time resolved
fluorescence measurements were carried out using the GFP-MTase fusion to
determine the fluorescence lifetime and anisotropy decay. These experiments were
conducted using a time resolved fluorescence instrument fabricated in-house. The
values determined in these experiments were then used to perform fluorescence
resonance energy transfer (FRET) measurements with fluorescently labelled DNA or
Ocr. These measurements gave information concerning the relative orientation of the
MTase with either DNA or Ocr.
The GFP-MTase fusion was also used to quantify the strength of interaction
with various ArdA proteins. Previous attempts to determine the strength of
interaction between MTase and ArdA proteins by employing conventional
techniques have been unsuccessful. Therefore, a novel method was developed that
exploits the interaction of MTase with a cation exchange medium, which can
subsequently be displaced upon binding to ArdA. This method facilitated the
determination, for the first time, of a set of binding affinities for the MTase and
ArdA interaction
SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling
Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure
Breaking point: the genesis and impact of structural variation in tumours
Somatic structural variants undoubtedly play important roles in driving tumourigenesis. This is evident despite the substantial technical challenges that remain in accurately detecting structural variants and their breakpoints in tumours and in spite of our incomplete understanding of the impact of structural variants on cellular function. Developments in these areas of research contribute to the ongoing discovery of structural variation with a clear impact on the evolution of the tumour and on the clinical importance to the patient. Recent large whole genome sequencing studies have reinforced our impression of each tumour as a unique combination of mutations but paradoxically have also discovered similar genome-wide patterns of single-nucleotide and structural variation between tumours. Statistical methods have been developed to deconvolute mutation patterns, or signatures, that recur across samples, providing information about the mutagens and repair processes that may be active in a given tumour. These signatures can guide treatment by, for example, highlighting vulnerabilities in a particular tumour to a particular chemotherapy. Thus, although the complete reconstruction of the full evolutionary trajectory of a tumour genome remains currently out of reach, valuable data are already emerging to improve the treatment of cancer
- …