2,200 research outputs found

    Universality in the entanglement structure of ferromagnets

    Full text link
    Systems of exchange-coupled spins are commonly used to model ferromagnets. The quantum correlations in such magnets are studied using tools from quantum information theory. Isotropic ferromagnets are shown to possess a universal low-temperature density matrix which precludes entanglement between spins, and the mechanism of entanglement cancellation is investigated, revealing a core of states resistant to pairwise entanglement cancellation. Numerical studies of one-, two-, and three-dimensional lattices as well as irregular geometries showed no entanglement in ferromagnets at any temperature or magnetic field strength.Comment: 4 pages, 2 figure

    Supernova electron capture rates for 55Co and 56Ni

    Get PDF
    We have calculated the Gamow-Teller strength distributions for the ground states and first excited states in 55Co and 56Ni. These calculations have been performed by shell model diagonalization in the pf shell using the KB3 interaction. The Gamow-Teller distributions are used to calculate the electron capture rates for typical presupernova conditions. Our 55Co rate is noticeably smaller than the presently adopted rate as it is dominated by weak low-lying transitions rather than the strong Gamow-Teller (GT) resonance which is located at a higher excitation energy in the daughter than usually parametrized. Although our 56Ni rate agrees with the presently adopted rate, we do not confirm the conventional parametrization of the GT centroid. Our results support general trends suggested on the basis of shell model Monte Carlo calculations.Comment: 4 pages, 4 figures, RevTeX 3.1, to appear in Phys. Lett.

    QED theory of the nuclear magnetic shielding in hydrogen-like ions

    Full text link
    The shielding of the nuclear magnetic moment by the bound electron in hydrogen-like ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g-factor of hydrogen-like ions.Comment: 4 pages, 2 tables, 2 figure

    Kramers-Wannier Approximation for 3D Ising Model

    Full text link
    We investigate the Kramers-Wannier approximation for the three-dimensional (3D) Ising model. The variational state is represented by an effective 2D Ising model, which contains two variational parameters. We numerically calculate the variational partition function using the corner transfer matrix renormalization group (CTMRG) method, and find its maximum with respect to the variational parameters. The calculated transition point Kc=0.2184K_{\rm c} = 0.2184 is only 1.5% less than the true KcK_{\rm c}; the result is better than that obtained by the corner transfer tensor renormalization group (CTTRG) approach. The calculated phase transition is mean-field like.Comment: 7 pages, 4 figures, submitted to Prog. Theor. Phy

    Equations of motion approach to the spin-1/2 Ising model on the Bethe lattice

    Full text link
    We exactly solve the ferromagnetic spin-1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed, that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coordination number z. Non-local correlation functions up to four points are also provided together with a study of the relevant thermodynamic quantities.Comment: RevTex, 29 pages, 13 figure

    Systematics of Gamow-Teller strengths in mid-fp-shell nuclei

    Full text link
    We show that the presently available data on the Gamow-Teller (GT) strength in mid-fp-shell nuclei are proportional to the product of the numbers of valence protons and neutron holes in the full fp-shell. This observation leads to important insights into the mechanism for GT quenching and to a simple parametrization of the Gamow-Teller strengths important for electron capture by fp-shell nuclei in the early stage of supernovae.Comment: 9 pages + 1 figure, Caltech preprint MAP-16

    Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    Get PDF
    In a previous Letter [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common over-barrier ionization estimate.Comment: 12 pages, 13 figures, RevTeX

    Temperature dependence of the nuclear symmetry energy

    Get PDF
    We have studied the properties of A=54 and A=64 isobars at temperatures T \leq 2 MeV via Monte Carlo shell model calculations with two different residual interactions. In accord with empirical indications, we find that the symmetry energy coefficient, b_{sym}, is independent of temperature to within 0.6 MeV for T \leq 1 MeV. This is in contrast to a recent suggestion of a 2.5 MeV increase of b_{sym} for this temperature, which would have significantly altered the supernova explosion scenario.Comment: 7 pages, including 2 figures, Caltech preprint MAP-17
    • …
    corecore