122 research outputs found
Rapid Saline Permafrost Thaw Below a Shallow Thermokarst Lake in Arctic Alaska
Permafrost warming and degradation is well documented across the Arctic. However, observation- and model-based studies typically consider thaw to occur at 0°C, neglecting the widespread occurrence of saline permafrost in coastal plain regions. In this study, we document rapid saline permafrost thaw below a shallow arctic lake. Over the 15-year period, the lakebed subsided by 0.6 m as ice-rich, saline permafrost thawed. Repeat transient electromagnetic measurements show that near-surface bulk sediment electrical conductivity increased by 198% between 2016 and 2022. Analysis of wintertime Synthetic Aperture Radar satellite imagery indicates a transition from a bedfast to a floating ice lake with brackish water due to saline permafrost thaw. The regime shift likely contributed to the 65% increase in thermokarst lake lateral expansion rates. Our results indicate that thawing saline permafrost may be contributing to an increase in landscape change rates in the Arctic faster than anticipated
Geophysical Observations of Taliks Below Drained Lake Basins on the Arctic Coastal Plain of Alaska
Lakes and drained lake basins (DLBs) together cover up to ∼80% of the western Arctic Coastal Plain of Alaska. The formation and drainage of lakes in this continuous permafrost region drive spatial and temporal landscape dynamics. Postdrainage processes including vegetation succession and permafrost aggradation have implications for hydrology, carbon cycling, and landscape evolution. Here, we used surface nuclear magnetic resonance (NMR) and transient electromagnetic (TEM) measurements in conjunction with thermal modeling to investigate permafrost aggradation beneath eight DLBs on the western Arctic Coastal Plain of Alaska. We also surveyed two primary surface sites that served as nonlake affected control sites. Approximate timing of lake drainage was estimated based on historical aerial imagery. We interpreted the presence of taliks based on either unfrozen water estimated with surface NMR and/or TEM resistivities in DLBs compared to measurements on primary surface sites and borehole resistivity logs. Our results show evidence of taliks below several DLBs that drained before and after 1949 (oldest imagery). We observed depths to the top of taliks between 9 and 45 m. Thermal modeling and geophysical observations agree about the presence and extent of taliks at sites that drained after 1949. Lake drainage events will likely become more frequent in the future due to climate change and our modeling results suggest that warmer and wetter conditions will limit permafrost aggradation in DLBs. Our observations provide useful information to predict future evolution of permafrost in DLBs and its implications for the water and carbon cycles in the Arctic
Laboratory Study of Collisionless Magnetic Reconnection
A concise review is given on the past two decades' results from laboratory
experiments on collisionless magnetic reconnection in direct relation with
space measurements, especially by Magnetospheric Multiscale (MMS) mission.
Highlights include spatial structures of electromagnetic fields in ion and
electron diffusion regions as a function of upstream symmetry and guide field
strength; energy conversion and partition from magnetic field to ions and
electrons including particle acceleration; electrostatic and electromagnetic
kinetic plasma waves with various wavelengths; and plasmoid-mediated multiscale
reconnection. Combined with the progress in theoretical, numerical, and
observational studies, the physics foundation of fast reconnection in
colisionless plasmas has been largely established, at least within the
parameter ranges and spatial scales that were studied. Immediate and long-term
future opportunities based on multiscale experiments and space missions
supported by exascale computation are discussed, including dissipation by
kinetic plasma waves, particle heating and acceleration, and multiscale physics
across fluid and kinetic scales.Comment: 40 pages, 15 figure
Psychiatric disorders and subsequent risk of cardiovascular disease: a longitudinal matched cohort study across three countries
Background: Several psychiatric disorders have been associated with increased risk of cardiovascular disease (CVD), however, the role of familial factors and the main disease trajectories remain unknown. Methods: In this longitudinal cohort study, we identified a cohort of 900,240 patients newly diagnosed with psychiatric disorders during January 1, 1987 and December 31, 2016, their 1,002,888 unaffected full siblings, and 1:10 age- and sex-matched reference population from nationwide medical records in Sweden, who had no prior diagnosis of CVD at enrolment. We used flexible parametric models to determine the time-varying association between first-onset psychiatric disorders and incident CVD and CVD death, comparing rates of CVD among patients with psychiatric disorders to the rates of unaffected siblings and matched reference population. We also used disease trajectory analysis to identify main disease trajectories linking psychiatric disorders to CVD. Identified associations and disease trajectories of the Swedish cohort were validated in a similar cohort from nationwide medical records in Denmark (N = 875,634 patients, same criteria during January 1, 1969 and December 31, 2016) and in Estonian cohorts from the Estonian Biobank (N = 30,656 patients, same criteria during January 1, 2006 and December 31, 2020), respectively. Findings: During up to 30 years of follow-up of the Swedish cohort, the crude incidence rate of CVD was 9.7, 7.4 and 7.0 per 1000 person-years among patients with psychiatric disorders, their unaffected siblings, and the matched reference population. Compared with their siblings, patients with psychiatric disorders experienced higher rates of CVD during the first year after diagnosis (hazard ratio [HR], 1.88; 95% confidence interval [CI], 1.79–1.98) and thereafter (1.37; 95% CI, 1.34–1.39). Similar rate increases were noted when comparing with the matched reference population. These results were replicated in the Danish cohort. We identified several disease trajectories linking psychiatric disorders to CVD in the Swedish cohort, with or without mediating medical conditions, including a direct link between psychiatric disorders and hypertensive disorder, ischemic heart disease, venous thromboembolism, angina pectoris, and stroke. These trajectories were validated in the Estonian Biobank cohort. Interpretation: Independent of familial factors, patients with psychiatric disorders are at an elevated risk of subsequent CVD, particularly during first year after diagnosis. Increased surveillance and treatment of CVDs and CVD risk factors should be considered as an integral part of clinical management, in order to reduce risk of CVD among patients with psychiatric disorders. Funding: This research was supported by EU Horizon 2020 Research and Innovation Action Grant, European Research Council Consolidator grant, Icelandic Research fund, Swedish Research Council, US NIMH, the Outstanding Clinical Discipline Project of Shanghai Pudong, the Fundamental Research Funds for the Central Universities, and the European Union through the European Regional Development Fund; the Research Council of Norway; the South-East Regional Health Authority, the Stiftelsen Kristian Gerhard Jebsen, and the EEA-RO-NO-2018-0535
Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF).
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in sub-arctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies
Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)
Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management
Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe
The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range
- …