7,716 research outputs found
Photon and Pomeron -- induced production of Dijets in , and collisions
In this paper we present a detailed comparison of the dijet production by
photon -- photon, photon -- pomeron and pomeron -- pomeron interactions in
, and collisions at the LHC energy. The transverse
momentum, pseudo -- rapidity and angular dependencies of the cross sections are
calculated at LHC energy using the Forward Physics Monte Carlo (FPMC), which
allows to obtain realistic predictions for the dijet production with two
leading intact hadrons. We obtain that \gamma \pom channel is dominant at
forward rapidities in collisions and in the full kinematical range in the
nuclear collisions of heavy nuclei. Our results indicate that the analysis of
dijet production at the LHC can be useful to test the Resolved Pomeron model as
well as to constrain the magnitude of the absorption effects.Comment: 11 pages, 6 figures, 1 table. Improved and enlarged version published
in European Physical Journal
Module networks revisited: computational assessment and prioritization of model predictions
The solution of high-dimensional inference and prediction problems in
computational biology is almost always a compromise between mathematical theory
and practical constraints such as limited computational resources. As time
progresses, computational power increases but well-established inference
methods often remain locked in their initial suboptimal solution. We revisit
the approach of Segal et al. (2003) to infer regulatory modules and their
condition-specific regulators from gene expression data. In contrast to their
direct optimization-based solution we use a more representative centroid-like
solution extracted from an ensemble of possible statistical models to explain
the data. The ensemble method automatically selects a subset of most
informative genes and builds a quantitatively better model for them. Genes
which cluster together in the majority of models produce functionally more
coherent modules. Regulators which are consistently assigned to a module are
more often supported by literature, but a single model always contains many
regulator assignments not supported by the ensemble. Reliably detecting
condition-specific or combinatorial regulation is particularly hard in a single
optimum but can be achieved using ensemble averaging.Comment: 8 pages REVTeX, 6 figure
Ground state optimization and hysteretic demagnetization: the random-field Ising model
We compare the ground state of the random-field Ising model with Gaussian
distributed random fields, with its non-equilibrium hysteretic counterpart, the
demagnetized state. This is a low energy state obtained by a sequence of slow
magnetic field oscillations with decreasing amplitude. The main concern is how
optimized the demagnetized state is with respect to the best-possible ground
state. Exact results for the energy in d=1 show that in a paramagnet, with
finite spin-spin correlations, there is a significant difference in the
energies if the disorder is not so strong that the states are trivially almost
alike. We use numerical simulations to better characterize the difference
between the ground state and the demagnetized state. For d>=3 the random-field
Ising model displays a disorder induced phase transition between a paramagnetic
and a ferromagnetic state. The locations of the critical points R_c(DS),
R_c(GS) differ for the demagnetized state and ground state. Consequently, it is
in this regime that the optimization of the demagnetized stat is the worst
whereas both deep in the paramagnetic regime and in the ferromagnetic one the
states resemble each other to a great extent. We argue based on the numerics
that in d=3 the scaling at the transition is the same in the demagnetized and
ground states. This claim is corroborated by the exact solution of the model on
the Bethe lattice, where the R_c's are also different.Comment: 13 figs. Submitted to Phys. Rev.
Muon Anomalous Magnetic Moment and mu -> e gamma in B-L Model with Inverse Seesaw
We study the anomalous magnetic moment of the muon, a_\mu, and lepton flavor
violating decay \mu -> e \gamma in TeV scale B-L extension of the Standard
Model (SM) with inverse seesaw mechanism. We show that the B-L contributions to
a_\mu are severely constrained, therefore the SM contribution remains intact.
We also emphasize that the current experimental limit of BR(\mu -> e \gamma)
can be satisfied for a wide range of parameter space and it can be within the
reach of MEG experiment.Comment: 10 pages, 4 Figure
Noise Measurement of Interacting Ferromagnetic Particles with High Resolution Hall Microprobes
We present our first experimental determination of the magnetic noise of a
superspinglass made of < 1 pico-liter frozen ferrofluid. The measurements were
performed with a local magnetic field sensor based on Hall microprobes operated
with the spinning current technique. The results obtained, though preliminary,
qualitatively agree with the theoretical predictions of Fluctuation-Dissipation
theorem (FDT) violation [1].Comment: 4pages, 2 figure
TBA-like equations and Casimir effect in (non-)perturbative AdS/CFT
We consider high spin, , long twist, , planar operators (asymptotic
Bethe Ansatz) of strong SYM. Precisely, we compute the minimal
anomalous dimensions for large 't Hooft coupling to the lowest order
of the (string) scaling variable with GKP string size . At the leading order ,
we can confirm the O(6) non-linear sigma model description for this bulk term,
without boundary term . Going further, we derive,
extending the O(6) regime, the exact effect of the size finiteness. In
particular, we compute, at all loops, the first Casimir correction (in terms of the infinite size O(6) NLSM), which reveals only one
massless mode (out of five), as predictable once the O(6) description has been
extended. Consequently, upon comparing with string theory expansion, at one
loop our findings agree for large twist, while reveal for negligible twist,
already at this order, the appearance of wrapping. At two loops, as well as for
next loops and orders, we can produce predictions, which may guide future
string computations.Comment: Version 2 with: new exact expression for the Casimir energy derived
(beyond the first two loops of the previous version); UV theory formulated
and analysed extensively in the Appendix C; origin of the O(6) NLSM
scattering clarified; typos correct and references adde
Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates
The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serve as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. T.O.B. would like to express his gratitude for funds provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil).info:eu-repo/semantics/publishedVersio
Large spin systematics in CFT
20 pages; v2: version published in JHEPUsing conformal field theory (CFT) arguments we derive an infinite number of constraints on the large spin expansion of the anomalous dimensions and structure constants of higher spin operators. These arguments rely only on analiticity, unitarity, crossing-symmetry and the structure of the conformal partial wave expansion. We obtain results for both, perturbative CFT to all order in the perturbation parameter, as well as non-perturbatively. For the case of conformal gauge theories this provides a proof of the reciprocity principle to all orders in perturbation theory and provides a new "reciprocity" principle for structure constants. We argue that these results extend also to non-conformal theories.Peer reviewe
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in
multi-Regge kinematics can naturally be expressed in terms of single-valued
iterated integrals on the moduli space of Riemann spheres with marked points.
As a consequence, scattering amplitudes in this limit can be expressed as
convolutions that can easily be computed using Stokes' theorem. We apply this
framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove
that at L loops all MHV amplitudes are determined by amplitudes with up to L +
4 external legs. We also investigate non-MHV amplitudes, and we show that they
can be obtained by convoluting the MHV results with a certain helicity flip
kernel. We classify all leading singularities that appear at LLA in the Regge
limit for arbitrary helicity configurations and any number of external legs.
Finally, we use our new framework to obtain explicit analytic results at LLA
for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to
eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the
results in Mathematica forma
- …
