61 research outputs found

    Transformation induced by Ewing's sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1

    Get PDF
    Ewing's sarcoma is a childhood bone tumour with poor prognosis, most commonly associated with a t(11;22)(q24;q12) reciprocal translocation that fuses the EWS and FLI-1 genes, resulting in the production of an aberrant chimeric transcription factor EWS/FLI-1. To erucidate the mechanisms by which EWS/FLI-1 mediates transformation in mouse models, we have generated a murine Ews/Fli-1 fusion protein. We demonstrate that this protein transforms fibroblast celrs in vitro similar to human EWS/FLI-1 as demonstrated by serum and anchorage-independent growth, the formation of tumours in nude mice and elevation of the oncogenic marker c-myc. Furthermore, transformation of these cells was inhibited by a specific represser, KRAB/FLI-1. The KRAB/FLI-1 repressor also suppressed the tumorigenic phenotype of a human Ewing's sarcoma cell line. These findings suggest that the transformed phenotype of Ewing's sarcoma cells can be reversed by using the sequence-specific FLI-1-DNA-binding domain to target a gone repressor domain. The inhibition of EWS/FLI-1 is the first demonstration of the KRAB domain suppressing the action of an ETS factor. This approach provides potential avenues for the elucidation of the biological mechanisms of EWS/FLI-1 oncogenesis and the development of novel therapeutic strategies. © 2003 Cancer Research UK.link_to_subscribed_fulltex

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state

    Characterization of the SNAG and SLUG Domains of Snail2 in the Repression of E-Cadherin and EMT Induction: Modulation by Serine 4 Phosphorylation

    Get PDF
    Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT

    Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens

    Get PDF
    Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1

    Windei, the Drosophila Homolog of mAM/MCAF1, Is an Essential Cofactor of the H3K9 Methyl Transferase dSETDB1/Eggless in Germ Line Development

    Get PDF
    The epigenetic regulation of gene expression by the covalent modification of histones is a fundamental mechanism required for the proper differentiation of germ line cells during development. Trimethylation of histone 3 lysine 9 (H3K9me3) leads to chromatin silencing and the formation of heterochromatin by recruitment of heterochromatin protein 1 (HP1). dSETDB1/Eggless (Egg), the ortholog of the human methyltransferase SETDB1, is the only essential H3K9 methyltransferase in Drosophila and is required for H3K9 trimethylation in the female germ line. Here we show that Windei (Wde), the Drosophila homolog of mouse mAM and human MCAF1, is an essential cofactor of Egg required for its nuclear localization and function in female germ line cells. By deletion analysis combined with coimmunoprecipitation, we have identified the protein regions in Wde and Egg that are necessary and sufficient for the interaction between the two proteins. We furthermore identified a region of Egg that gets covalently modified by SUMOylation, which may facilitate the formation of higher order chromatin-modifying complexes. Together with Egg, Wde localizes to euchromatin, is enriched on chromosome 4, and binds to the Painting of fourth (POF) protein. Our data provide the first genetic and phenotypic analysis of a mAM/MCAF1 homolog in a model organism and demonstrate its essential function in the survival of germ line cells

    The RNA Helicase Rm62 Cooperates with SU(VAR)3-9 to Re-Silence Active Transcription in Drosophila melanogaster

    Get PDF
    Gene expression is highly dynamic and many genes show a wide range in expression over several orders of magnitude. This regulation is often mediated by sequence specific transcription factors. In addition, the tight packaging of DNA into chromatin can provide an additional layer of control resulting in a dynamic range of gene expression covering several orders of magnitude. During transcriptional activation, chromatin barriers have to be eliminated to allow an efficient progression of the RNA polymerase. This repressive chromatin structure has to be re-established quickly after it has been activated in order to tightly regulate gene activity. We show that the DExD/H box containing RNA helicase Rm62 is targeted to a site of rapid induction of transcription where it is responsible for an increased degree of methylation at H3K9 at the heat shock locus after removal of the heat shock stimulus. The RNA helicase interacts with the well-characterized histone methyltransferase SU(VAR)3-9 via its N-terminus, which provides a potential mechanism for the targeting of H3K9 methylation to highly regulated genes. The recruitment of SU(VAR)3-9 through interaction with a RNA helicase to a site of active transcription might be a general mechanism that allows an efficient silencing of highly regulated genes thereby enabling a cell to fine tune its gene activity over a wide range

    Adaptive Evolution in Zinc Finger Transcription Factors

    Get PDF
    The majority of human genes are conserved among mammals, but some gene families have undergone extensive expansion in particular lineages. Here, we present an evolutionary analysis of one such gene family, the poly–zinc-finger (poly-ZF) genes. The human genome encodes approximately 700 members of the poly-ZF family of putative transcriptional repressors, many of which have associated KRAB, SCAN, or BTB domains. Analysis of the gene family across the tree of life indicates that the gene family arose from a small ancestral group of eukaryotic zinc-finger transcription factors through many repeated gene duplications accompanied by functional divergence. The ancestral gene family has probably expanded independently in several lineages, including mammals and some fishes. Investigation of adaptive evolution among recent paralogs using dN/dS analysis indicates that a major component of the selective pressure acting on these genes has been positive selection to change their DNA-binding specificity. These results suggest that the poly-ZF genes are a major source of new transcriptional repression activity in humans and other primates

    Genome-Wide Survey and Developmental Expression Mapping of Zebrafish SET Domain-Containing Genes

    Get PDF
    SET domain-containing proteins represent an evolutionarily conserved family of epigenetic regulators, which are responsible for most histone lysine methylation. Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies, can be utilized to study the biological functions of these genes and the related epigenetic mechanisms during early development. To this end, we have performed a genome-wide survey of zebrafish SET domain genes. 58 genes total have been identified. Although gene duplication events give rise to several lineage-specific paralogs, clear reciprocal orthologous relationship reveals high conservation between zebrafish and human SET domain genes. These data were further subject to an evolutionary analysis ranging from yeast to human, leading to the identification of putative clusters of orthologous groups (COGs) of this gene family. By means of whole-mount mRNA in situ hybridization strategy, we have also carried out a developmental expression mapping of these genes. A group of maternal SET domain genes, which are implicated in the programming of histone modification states in early development, have been identified and predicted to be responsible for all known sites of SET domain-mediated histone methylation. Furthermore, some genes show specific expression patterns in certain tissues at certain stages, suggesting the involvement of epigenetic mechanisms in the development of these systems. These results provide a global view of zebrafish SET domain histone methyltransferases in evolutionary and developmental dimensions and pave the way for using zebrafish to systematically study the roles of these genes during development
    • …
    corecore