24 research outputs found

    A low COMT activity haplotype is associated with recurrent preeclampsia in a Norwegian population cohort (HUNT2)

    Get PDF
    The etiology of preeclampsia is complex, with susceptibility being attributable to multiple environmental factors and a large genetic component. Although many candidate genes for preeclampsia have been suggested and studied, the specific causative genes still remain to be identified. Catechol-O-methyltransferase (COMT) is an enzyme involved in catecholamine and estrogen degradation and has recently been ascribed a role in development of preeclampsia. In the present study, we have examined the COMT gene by genotyping the functional Val108/158Met polymorphism (rs4680) and an additional single-nucleotide polymorphism, rs6269, predicting COMT activity haplotypes in a large Norwegian case/control cohort (ncases= 1135, ncontrols= 2262). A low COMT activity haplotype is associated with recurrent preeclampsia in our cohort. This may support the role of redox-regulated signaling and oxidative stress in preeclampsia pathogenesis as suggested by recent studies in a genetic mouse model. The COMT gene might be a genetic risk factor shared between preeclampsia and cardiovascular diseases

    Polymorphisms of Serotonin Receptor 2A and 2C Genes and COMT in Relation to Obesity and Type 2 Diabetes

    Get PDF
    BACKGROUND:Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS:In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2)) and a randomly selected group (n = 831) were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49). Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat-BMI (OR = 1.08, CI = 1.01-1.16). The SNPs were associated with a number of physiological variables; most importantly 5HT2C rs3813929 T-allele was associated with glucose (OR = 4.56, CI = 1.13-18.4) and acute insulin response (OR = 0.65, CI = 0.44-0.94) in S-49. COMT rs4680 GG-genotype was associated with glucose (OR = 1.04, CI = 1.00-1.09). Except for an association between 5HT2A rs6311 and total-cholesterol at both surveys, significant in S-46 (OR = 2.66, CI = 1.11-6.40), no significant associations were observed for the other phenotypes. Significant associations were obtained when combined genotype of 5HT2C rs3813929 and COMT rs4680 were examined in relation to BMI (OR = 1.12, CI = 1.03-1.21), fat-BMI (OR = 1.22, CI = 1.08-1.38), waist (OR = 1.13, CI = 1.04-1.22), and cholesterol (OR = 5.60, CI = 0.99-31.4). Analyses of impaired glucose tolerance (IGT) and type 2 diabetes (T2D) revealed, a 12.3% increased frequency of 5HT2C rs3813929 T-allele and an 11.6% increased frequency of COMT rs4680 GG-genotype in individuals with IGT or T2D (chi(2), p = 0.05 and p = 0.06, respectively). Examination of the combined genotypes of 5HT2C and COMT showed a 34.0% increased frequency of IGT or T2D (chi(2), p = 0.01). CONCLUSIONS:The findings lend further support to the involvement of serotonin, noradrenaline and dopamine pathways on obesity and glucose homeostasis, in particular when combined genotype associations are explored

    Epistasis between COMT and MTHFR in Maternal-Fetal Dyads Increases Risk for Preeclampsia

    Get PDF
    Preeclampsia is a leading cause of perinatal morbidity and mortality. This disorder is thought to be multifactorial in origin, with multiple genes, environmental and social factors, contributing to disease. One proposed mechanism is placental hypoxia-driven imbalances in angiogenic and anti-angiogenic factors, causing endothelial cell dysfunction. Catechol-O-methyltransferase (Comt)-deficient pregnant mice have a preeclampsia phenotype that is reversed by exogenous 2-methoxyestradiol (2-ME), an estrogen metabolite generated by COMT. 2-ME inhibits Hypoxia Inducible Factor 1α, a transcription factor mediating hypoxic responses. COMT has been shown to interact with methylenetetrahydrofolate reductase (MTHFR), which modulates the availability of S-adenosylmethionine (SAM), a COMT cofactor. Variations in MTHFR have been associated with preeclampsia. By accounting for allelic variation in both genes, the role of COMT has been clarified. COMT allelic variation is linked to enzyme activity and four single nucleotide polymorphisms (SNPs) (rs6269, rs4633, rs4680, and rs4818) form haplotypes that characterize COMT activity. We tested for association between COMT haplotypes and the MTHFR 677 C→T polymorphism and preeclampsia risk in 1103 Chilean maternal-fetal dyads. The maternal ACCG COMT haplotype was associated with reduced risk for preeclampsia (P = 0.004), and that risk increased linearly from low to high activity haplotypes (P = 0.003). In fetal samples, we found that the fetal ATCA COMT haplotype and the fetal MTHFR minor “T” allele interact to increase preeclampsia risk (p = 0.022). We found a higher than expected number of patients with preeclampsia with both the fetal risk alleles alone (P = 0.052) and the fetal risk alleles in combination with a maternal balancing allele (P<0.001). This non-random distribution was not observed in controls (P = 0.341 and P = 0.219, respectively). Our findings demonstrate a role for both maternal and fetal COMT in preeclampsia and highlight the importance of including allelic variation in MTHFR

    Hedonic and incentive signals for body weight control

    Get PDF
    Here we review the emerging neurobiological understanding of the role of the brain’s reward system in the regulation of body weight in health and in disease. Common obesity is characterized by the over-consumption of palatable/rewarding foods, reflecting an imbalance in the relative importance of hedonic versus homeostatic signals. The popular ‘incentive salience theory’ of food reward recognises not only a hedonic/pleasure component (‘liking’) but also an incentive motivation component (‘wanting’ or ‘reward-seeking’). Central to the neurobiology of the reward mechanism is the mesoaccumbal dopamine system that confers incentive motivation not only for natural rewards such as food but also by artificial rewards (eg. addictive drugs). Indeed, this mesoaccumbal dopamine system receives and integrates information about the incentive (rewarding) value of foods with information about metabolic status. Problematic over-eating likely reflects a changing balance in the control exerted by hypothalamic versus reward circuits and/or it could reflect an allostatic shift in the hedonic set point for food reward. Certainly, for obesity to prevail, metabolic satiety signals such as leptin and insulin fail to regain control of appetitive brain networks, including those involved in food reward. On the other hand, metabolic control could reflect increased signalling by the stomach-derived orexigenic hormone, ghrelin. We have shown that ghrelin activates the mesoaccumbal dopamine system and that central ghrelin signalling is required for reward from both chemical drugs (eg alcohol) and also from palatable food. Future therapies for problematic over-eating and obesity may include drugs that interfere with incentive motivation, such as ghrelin antagonists

    Cerebrospinal fluid concentration of complement component 4A is increased in first episode schizophrenia.

    Get PDF
    Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology
    corecore