3,755 research outputs found

    Breakdown of the Wiedemann-Franz law in strongly-coupled electron-phonon system, application to the cuprates

    Get PDF
    With the superconducting cuprates in mind, a set of unitary transformations was used to decouple electrons and phonons in the strong-coupling limit. While phonons remain almost unrenormalised, electrons are transformed into itinerent singlet and triplet bipolarons and thermally excited polarons. The triplet/singlet exchange energy and the binding energy of the bipolarons are thought to account for the spin and charge pseudogaps in the cuprates, respectively. We calculated the Hall Lorenz number of the system to show that the Wiedemann-Franz law breaks down due to the interference of the polaron and bipolaron contributions to heat flow. The model provides a quantitative fit to magnetotransport data in the cuprates. Furthermore we are able to extract the phonon component of the thermal conductivity with the use of experimental data and the model. Our results further validate the use of a charged Bose gas model to describe normal and superconducting properties of unconventional superconductors.Comment: 9 pages, 6 figures. Submitted to Physical Review

    Angle-resolved photoemission spectroscopy of band tails in lightly doped cuprates

    Get PDF
    We amend ab initio strongly-correlated band structures by taking into account the band-tailing phenomenon in doped charge-transfer Mott-Hubbard insulators. We show that the photoemission from band tails accounts for sharp "quasi-particle" peaks, rapid loss of their intensities in some directions of the Brillouin zone ("Fermi-arcs") and high-energy "waterfall" anomalies as a consequence of matrix-element effects of disorder-localised states in the charge-transfer gap of doped cuprates.Comment: 4 pages, 4 figure

    Comment on `Experimental and Theoretical Constraints of Bipolaronic Superconductivity in High TcT_{c} Materials: An Impossibility'

    Full text link
    We show that objections raised by Chakraverty etet alal (Phys. Rev. Lett. 81, 433 (1998)) to the bipolaron model of superconducting cuprates are the result of an incorrect approximation for the bipolaron energy spectrum and misuse of the bipolaron theory. The consideration, which takes into account the multiband energy structure of bipolarons and the unscreened electron-phonon interaction clearly indicates that cuprates are in the Bose-Einstein condensation regime with mobile charged bosons.Comment: 1 page, no figure

    Isotope effects in high-Tc cuprate superconductors: Ultimate proof for bipolaron theory of superconductivity

    Full text link
    Developing a theory of high-temperature superconductivity in copper oxides is one of the outstanding problems in physics. Twenty-five years after its discovery, no consensus on the microscopic theory has been reached despite tremendous theoretical and experimental efforts. Attempts to understand this problem are hindered by the subtle interplay among a few mechanisms and the presence of several nearly degenerate and competing phases in these systems. Here we provide unified parameter-free explanation of the observed oxygen-isotope effects on the critical temperature, the magnetic-field penetration depth, and on the normal-state pseudogap for underdoped cuprate superconductors within the framework of the bipolaron theory compatible with the strong Coulomb and Froehlich interactions, and with many other independent observations in these highly polarizable doped insulators. Remarkably, we also quantitatively explain measured critical temperatures and magnitudes of the magnetic-field penetration depth. The present work thus represents an ultimate proof of the bipolaron theory of high-temperature superconductivity, which takes into account essential Coulomb and electron-phonon interactions.Comment: 8 pages, 2 figure

    Time-dependent backgrounds of 2D string theory: Non-perturbative effects

    Full text link
    We study the non-perturbative corrections (NPC) to the partition function of a compactified 2D string theory in a time-dependent background generated by a tachyon source. The sine-Liouville deformation of the theory is a particular case of such a background. We calculate the leading as well as the subleading NPC using the dual description of the string theory as matrix quantum mechanics. As in the minimal string theories, the NPC are classified by the double points of a complex curve. We calculate them by two different methods: by solving Toda equation and by evaluating the quasiclassical fermion wave functions. We show that the result can be expressed in terms of correlation functions of the bosonic field associated with the tachyon source and identify the leading and the subleading corrections as the contributions from the one-point (disk) and two-point (annulus) correlation functions.Comment: 37 pages, 2 figure

    Reply to "Comment on 'Origin of combination frequencies in quantum magnetic oscillations of two-dimensional multiband metals' " by A.S. Alexandrov and A.M. Bratkovsky [cond-mat/0207173]

    Full text link
    In their comment on the paper (Phys. Rev. B 65, 153403 (2002); cond-mat/0110154), Alexandrov and Bratkovsky (cond-mat/0207173) argue that they correctly took into account the chemical potential oscillations in their analytical theory of combination frequencies in multiband low-dimensional metals by expanding the free energy in powers of the chemical potential oscillations. In this reply, we show that this claim contradicts their original paper (Phys. Rev. B 63, 033105 (2001)). We demonstrate that the condition given for the expansion is mathematically incorrect. The correct condition allows to understand the limits of validity of the analytical theory.Comment: 4 page

    High Temperature Superconductivity: the explanation

    Full text link
    Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question "Is there an explanation?" [Nature v 327 (1987) 185] expressed a view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with the electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra (ARPES), with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then the controversial issue of whether the electron-phonon interaction (EPI) is crucial for high-temperature superconductivity or weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Froehlich) EPI, and that the theory is fully compatible with the key experiments.Comment: 8 pages, 2 figures, invited comment to Physica Script

    Hamiltonian Analysis of non-chiral Plebanski Theory and its Generalizations

    Full text link
    We consider non-chiral, full Lorentz group-based Plebanski formulation of general relativity in its version that utilizes the Lagrange multiplier field Phi with "internal" indices. The Hamiltonian analysis of this version of the theory turns out to be simpler than in the previously considered in the literature version with Phi carrying spacetime indices. We then extend the Hamiltonian analysis to a more general class of theories whose action contains scalars invariants constructed from Phi. Such theories have recently been considered in the context of unification of gravity with other forces. We show that these more general theories have six additional propagating degrees of freedom as compared to general relativity, something that has not been appreciated in the literature treating them as being not much different from GR.Comment: 10 page

    Coherent `ab' and `c' transport theory of high-TcT_{c} cuprates

    Full text link
    We propose a microscopic theory of the `cc'-axis and in-plane transport of copper oxides based on the bipolaron theory and the Boltzmann kinetics. The fundamental relationship between the anisotropy and the spin susceptibility is derived, ρc(T,x)/ρab(T,x)x/Tχs(T,x)\rho_{c}(T,x)/\rho_{ab}(T,x)\sim x/\sqrt{T}\chi_{s}(T,x). The temperature (T)(T) and doping (x)(x) dependence of the in-plane, ρab\rho_{ab} and out-of-plane, ρc\rho_{c} resistivity and the spin susceptibility, χs\chi_{s} are found in a remarkable agreement with the experimental data in underdoped, optimally and overdoped La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} for the entire temperature regime from TcT_{c} up to 800K800K. The normal state gap is explained and its doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques

    S-duality in Twistor Space

    Get PDF
    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space MHM_H must carry an isometric action of the modular group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of MHM_H, and construct a general class of SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include MHM_H corrected by D3-D1-D(-1)-instantons (with fivebrane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional N=2 gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.Comment: 29 pages, 1 figur
    corecore