25 research outputs found

    The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint

    Get PDF
    The aim of this study was to develop a finite element (FE) hip model with subject-specific geometry and biphasic cartilage properties. Different levels of detail in the representation of fibre reinforcement were considered to evaluate the feasibility to simplify the complex depth-dependent fibre pattern in the native hip joint. A FE model of a cadaveric hip with subject-specific geometry was constructed through micro-computed-tomography (µCT) imaging. The cartilage was assumed to be biphasic and fibre-reinforced with different levels of detail in the fibre representation. Simulations were performed for heel-strike, mid-stance and toe-off during walking and one-leg-stance over 1500s. It was found that the required level of detail in fibre representation depends on the parameter of interest. The contact stress of the native hip joint could be realistically predicted by simplifying the fibre representation to being orthogonally reinforced across the whole thickness. To predict the fluid pressure, depth-dependent fibre organisation is needed but specific split-line pattern on the surface of cartilage is not necessary. Both depth-dependent and specific surface fibre orientations are required to simulate the strains

    Modeling of the condyle elements within a biomechanical knee model

    Get PDF
    The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling of the condyle contact in the knee will lead to reproduction of the complex combination of flexion/extension, abduction/adduction and tibial rotation ob-served in the real knee? The model is composed by two anatomic segments, the tibia and the femur, whose characteristics are functions of the geometric and anatomic properties of the real bones. The biomechanical model characterization is developed under the framework of multibody systems methodologies using Cartesian coordinates. The type of approach used in the proposed knee model is the joint surface contact conditions between ellipsoids, represent-ing the two femoral condyles, and points, representing the tibial plateau and the menisci. These elements are closely fitted to the actual knee geometry. This task is undertaken by con-sidering a parameter optimization process to replicate experimental data published in the lit-erature, namely that by Lafortune and his co-workers in 1992. Then, kinematic data in the form of flexion/extension patterns are imposed on the model corresponding to the stance phase of the human gait. From the results obtained, by performing several computational simulations, it can be observed that the knee model approximates the average secondary mo-tion patterns observed in the literature. Because the literature reports considerable inter-individual differences in the secondary motion patterns, the knee model presented here is also used to check whether it is possible to reproduce the observed differences with reasonable variations of bone shape parameters. This task is accomplished by a parameter study, in which the main variables that define the geometry of condyles are taken into account. It was observed that the data reveal a difference in secondary kinematics of the knee in flexion ver-sus extension. The likely explanation for this fact is the elastic component of the secondary motions created by the combination of joint forces and soft tissue deformations. The proposed knee model is, therefore, used to investigate whether this observed behavior can be explained by reasonable elastic deformations of the points representing the menisci in the model.Fundação para a Ciência e a Tecnologia (FCT) - PROPAFE – Design and Development of a Patello-Femoral Prosthesis (PTDC/EME-PME/67687/2006), DACHOR - Multibody Dynamics and Control of Hybrid Active Orthoses MIT-Pt/BSHHMS/0042/2008, BIOJOINTS - Development of advanced biological joint models for human locomotion biomechanics (PTDC/EME-PME/099764/2008)

    Exploring the Utility of 3-D-printed Laboratory Equipment

    No full text

    Multibody approach to musculoskeletal and joint loading

    Full text link
    Joint and muscular loads are the major internal loads in the human body. Knowing or being able to estimate those loads is of importance in multiple instances, such as in designing implants, predicting surgical outcomes, in estimating occupational loading, and in designing interventions. Unfortunately, the direct measurement of the body\u27s internal forces is difficult, rather invasive, and requires surgical operations. Therefore, the need is growing for computational tools for muscular, bone and joint loading estimation. This article will present a review of the computational methods that can be utilized for musculoskeletal and joint system loading estimation. © 2014 CIMNE, Barcelona, Spain

    Injection molded composites with iron oxide addition

    No full text

    Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones

    Full text link
    A method for bone strain estimation is examined in this article. The flexibility of a single bone in an otherwise rigid human skeleton model has been studied previously by various authors. However, in the previous studies, the effect of the flexibility of multiple bones on the musculoskeletal model behavior was ignored. This study describes a simulation method that can be used to estimate the bone strains at both tibias and femurs of a 65-year old Caucasian male subject. The verification of the method is performed by the comparison of the results with other studies available in literature. The results of the study show good correlation with the results of previous empirical studies. A damping effect of the flexible bones on the model is also studied in this paper.<br /

    An application of the flexible multibody approach used to estimate human skeleton loading

    Full text link
    Skeletal loading can be estimated using several approaches. The most common approach is based on utilizing mechanical principles and ground reaction forces as predictors for skeletal loading. This method can be considered as a relatively simple approach since it cannot account for muscle forces. Flexible multibody approach allows for estimating skeletal loading and strains within the bones; once bone flexibility, muscle forces, ground reaction forces and the natural motion of a subject have been accounted for. This paper presents a summary that describes how deformable bodies can be introduced to the standard multibody formulation and explains the benefits and drawbacks. As an example of application, models used to assess tibial strains among two subjects are presented. The results of the multibody simulations are compared to in vivo studies, showing acceptable correlation and method performance

    The use of the flexible multibody approach for lower body skeletal loading analysis

    Get PDF
    AbstractSkeletal loading can be estimated using several approaches. The most common approach is based on utilizing mechanical principles and ground reaction forces as predictors for skeletal loading. This method can be considered as a relatively simple approach since it cannot account for muscle forces. Flexible multibody approach allows forestimating skeletal loading and strains within the bones; once bone fexibility, muscle forces, ground reaction forces and the natural motion of a subject have been accounted for. This paper presents a summary that describes how deformable bodies can be introduced to the standard multibody formulation and explains the benefits and drawbacks. As an example of application, models used to assess tibial strains among two subjects are presented. The results of the multibody simulations are compared to in-vivo studies, showing acceptable correlation and method performance
    corecore