825 research outputs found

    Proximity Effect, Andreev Reflections, and Charge Transport in Mesoscopic Superconducting-Semiconducting Heterostructures

    Full text link
    In the quasi-twodimensional (Q2D) electron gas of an InAs channel between an AlSb substrate and superconducting Niobium layers the proximity effect induces a pair potential so that a Q2D mesoscopic superconducting-normal-superconducting (SNS) junction forms in the channel. The pair potential is calculated with quasiclassical Green's functions in the clean limit. For such a junction alternating Josephson currents and current-voltage characteristics (CVCs) are computed, using the non-equilibrium quasiparticle wavefunctions which solve the time-dependent Bogoliubov-de Gennes Equations. The CVCs exhibit features found experimentally by the Kroemer group: A steep rise of the current at small voltages ("foot") changes at a "corner current" to a much slower increase of current with higher voltages, and the zero-bias differential resistance increases with temperature. Phase-coherent multiple Andreev reflections and the associated Cooper pair transfers are the physical mechanisms responsible for the oscillating Josephson currents and the CVCs. Additional experimental findings not reproduced by the theory require model improvements, especially a consideration of the external current leads which should give rise to hybrid quasiparticle/collective mode excitations.Comment: 8 pages, 4 figures (consisting of 5 .ps-files), added referenc

    On the challenge to improve the density response with unusual gradient approximations

    Full text link
    Certain excitations, especially ones of long-range charge transfer character, are poorly described by time-dependent density functional theory (TDDFT) when typical (semi-)local functionals are used. A proper description of these excitations would require an exchange-correlation response differing substantially from the usual (semi-)local one. It has recently been shown that functionals of the generalized gradient approximation (GGA) type can yield unusual potentials, mimicking features of the exact exchange derivative discontinuity and showing divergences on orbital nodal surfaces. We here investigate whether these unusual potential properties translate into beneficial response properties. Using the Sternheimer formalism we closely investigate the response obtained with the 2013 exchange approximation by Armiento and K\"ummel (AK13) and the 1988 exchange approximation by Becke (B88), both of which show divergences on orbital nodal planes. Numerical calculations for Na2 as well as analytical and numerical calculations for the hydrogen atom show that the response of AK13 behaves qualitatively different from usual semi local functionals. However, the AK13 functional leads to fundamental instabilities in the asymptotic region that prevent its practical application in TDDFT. Our findings may help the development of future improved functionals, and corroborate that the frequency-dependent Sternheimer formalism is excellently suited for running and analyzing TDDFT calculations

    The Hubble Legacy Archive ACS Grism Data

    Full text link
    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 \mum,withadispersionofm, with a dispersion of 40 \ \AA / pixelandaresolutionof and a resolution of \sim 80\ \AAforpointlikesources.TheACSG800Limagesandmatcheddirectimageswerereducedwithanautomaticpipelinethathandlesallstepsfromarchiveretrieval,alignmentandastrometriccalibration,directimagecombination,cataloguegeneration,spectralextractionandcollectionofmetadata.Thelargenumberofextractedspectra(73,581)demandedautomaticmethodsforqualitycontrolandanautomatedclassificationalgorithmwastrainedonthevisualinspectionofseveralthousandspectra.Thefinalsampleofqualitycontrolledspectraincludes47,919datasets(65ofextractedspectra)for for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47,919 datasets (65% of the total number of extracted spectra) for 32,149uniqueobjects,withamedian unique objects, with a median i_{\rm AB}bandmagnitudeof23.7,reaching26.5ABforthefaintestobjects.Eachreleaseddatasetcontainsscienceready1Dand2Dspectra,aswellasmultibandimagecutoutsofcorrespondingsourcesandausefulpreviewpagesummarisingthedirectandslitlessdata,astrometricandphotometricparameters.Inordertocharacterizetheslitlessspectra,emissionlinefluxandequivalentwidthsensitivityoftheACSdatawerecomparedwithpublicgroundbasedspectraintheGOODSSouthfield.Anexamplelistofemissionlinegalaxieswithtwoormoreidentifiedlinesisalsoincluded,coveringtheredshiftrange-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2-4.6$.Comment: Accepted for publication in Astronomy and Astrophysics; 29 pages, 16 Figures, 4 Tables in text and 3Tables in Appendi

    Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots

    Full text link
    In this work, we have investigated the optical properties of two samples of CdSe quantum dots by using submicro-photoluminescence spectroscopy. The effect of vicinal-surface GaAs substrates on their properties has been also assessed. The thinner sample, grown on a substrate with vicinal surface, includes only dots with a diameter of less than 10 nm (type A islands). Islands of an average diameter of about 16 nm (type B islands) that are related to a phase transition via a Stranski-Krastanow growth process are also distributed in the thicker sample grown on an oriented substrate. We have studied the evolution of lineshapes of PL spectra for these two samples by improving spatial resolution that was achieved using nanoapertures or mesa structures. It was found that the use of a substrate with the vicinal surface leads to the suppression of excitonic PL emitted from a wetting layer.Comment: 2pages, 2 figures, Proceedings of International Conference On Superlattices Nano-Structures And Nano-Devices, July, Toulouse, France, to appear in the special issue of Physica

    Simple iterative construction of the optimized effective potential for orbital functionals, including exact exchange

    Full text link
    For exchange-correlation functionals that depend explicitly on the Kohn-Sham orbitals, the potential V_{\mathrm{xc}\sigma}(\re) must be obtained as the solution of the optimized effective potential (OEP) integral equation. This is very demanding and has limited the use of orbital functionals like exact exchange. We demonstrate that the OEP can be obtained iteratively by solving a system of partial differential equations instead of an integral equation. This amounts to calculating the orbital shifts that exactify the Krieger-Li-Iafrate (KLI) approximation. Unoccupied orbitals do not need to be calculated. Accuracy and efficiency of the method are shown for atoms and clusters using the exact exchange energy. Counter-intuitive asymptotic limits of the exact OEP, not accessible from previous constructions, are presented.Comment: Physical Review Letters, accepted for publication. 4 pages, 1 figur

    Dynamics of conversion of supercurrents into normal currents, and vice versa

    Full text link
    The generation and destruction of the supercurrent in a superconductor (S) between two resistive normal (N) current leads connected to a current source is computed from the source equation for the supercurrent density. This equation relates the gradient of the pair potential's phase to electron and hole wavepackets that create and destroy Cooper pairs in the N/S interfaces. Total Andreev reflection and supercurrent transmission of electrons and holes are coupled together by the phase rigidity of the non-bosonic Cooper-pair condensate. The calculations are illustrated by snapshots from a computer film.Comment: 8 pages, 1 figure, accepted by Phys. Rev.

    Two Avenues to Self-Interaction Correction within Kohn-Sham Theory: Unitary Invariance is the Shortcut

    Get PDF
    The most widely-used density functionals for the exchange-correlation energy are inexact for one-electron systems. Their self-interaction errors can be severe in some applications. The problem is not only to correct the self-interaction error, but to do so in a way that will not violate size-consistency and will not go outside the standard Kohn-Sham density functional theory. The solution via the optimized effective potential (OEP) method will be discussed, first for the Perdew-Zunger self-interaction correction (whose performance for molecules is briefly summarized) and then for the more modern self-interaction corrections based upon unitarily-invariant indicators of iso-orbital regions. For the latter approaches, the OEP construction is greatly simplified. The kinetic-energy-based iso-orbital indicator \tau^W_\sigma(\re)/\tau_\sigma(\re) will be discussed and plotted, along with an alternative exchange-based indicator

    The Hubble Legacy Archive NICMOS Grism Data

    Full text link
    The Hubble Legacy Archive (HLA) aims to create calibrated science data from the Hubble Space Telescope archive and make them accessible via user-friendly and Virtual Observatory (VO) compatible interfaces. It is a collaboration between the Space Telescope Science Institute (STScI), the Canadian Astronomy Data Centre (CADC) and the Space Telescope - European Coordinating Facility (ST-ECF). Data produced by the Hubble Space Telescope (HST) instruments with slitless spectroscopy modes are among the most difficult to extract and exploit. As part of the HLA project, the ST-ECF aims to provide calibrated spectra for objects observed with these HST slitless modes. In this paper, we present the HLA NICMOS G141 grism spectra. We describe in detail the calibration, data reduction and spectrum extraction methods used to produce the extracted spectra. The quality of the extracted spectra and associated direct images is demonstrated through comparison with near-IR imaging catalogues and existing near-IR spectroscopy. The output data products and their associated metadata are publicly available through a web form at http://hla.stecf.org and via VO interfaces. In total, 2470 spectra of 1923 unique targets are included in the current release.Comment: 18 pages, 21 figures, accepted for publication in Astronomy & Astrophysic

    Equilibrium and time-dependent Josephson current in one-dimensional superconducting junctions

    Full text link
    We investigate the transport properties of a one-dimensional superconductor-normal metal-superconductor (S-N-S) system described within the tight-binding approximation. We compute the equilibrium dc Josephson current and the time-dependent oscillating current generated after the switch-on of a constant bias. In the first case an exact embedding procedure to calculate the Nambu-Gorkov Keldysh Green's function is employed and used to derive the continuum and bound states contributions to the dc current. A general formalism to obtain the Andreev bound states (ABS) of a normal chain connected to superconducting leads is also presented. We identify a regime in which all Josephson current is carried by the ABS and obtain an analytic formula for the current-phase relation in the limit of long chains. In the latter case the condition for perfect Andreev reflections is expressed in terms of the microscopic parameters of the model, showing a limitation of the so called wide-band-limit (WBL) approximation. When a finite bias is applied to the S-N-S junction we compute the exact time-evolution of the system by solving numerically the time-dependent Bogoliubov-deGennes equations. We provide a microscopic description of the electron dynamics not only inside the normal region but also in the superconductors, thus gaining more information with respect to WBL-based approaches. Our scheme allows us to study the ac regime as well as the transient dynamics whose characteristic time-scale is dictated by the velocity of multiple Andreev reflections

    Active Brownian Motion Tunable by Light

    Get PDF
    Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this article, we investigate in some more details their swimming mechanism leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture generating a spatial chemical concentration gradient, which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behaviour of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent
    corecore