207 research outputs found

    Early deformation mechanisms in the shear affected region underneath a copper sliding contact

    Get PDF
    Dislocation mediated plastic deformation decisively influences the friction coefficient and the microstructural changes at many metal sliding interfaces during tribological loading. This work explores the initiation of a tribologically induced microstructure in the vicinity of a copper twin boundary. Two distinct horizontal dislocation traces lines (DTL) are observed in their interaction with the twin boundary beneath the sliding interface. DTL formation seems unaffected by the presence of the twin boundary but the twin boundary acts as an indicator of the occurring deformation mechanisms. Three concurrent elementary processes can be identified: simple shear of the subsurface area in sliding direction, localized shear at the primary DTL and crystal rotation in the layers above and between the DTLs around axes parallel to the transverse direction. Crystal orientation analysis demonstrates a strong compatibility of these proposed processes. Quantitatively separating these different deformation mechanisms is crucial for future predictive modeling of tribological contacts

    Whole-cell analysis of low-density lipoprotein uptake by macrophages using STEM tomography

    Get PDF
    Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80u thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters

    Elucidating the structural composition of a Fe-N-C catalyst by nuclear and electron resonance techniques

    Get PDF
    Feā€“Nā€“C catalysts are very promising materials for fuel cells and metalā€“air batteries. This work gives fundamental insights into the structural composition of an Feā€“Nā€“C catalyst and highlights the importance of an inā€depth characterization. By nuclearā€ and electronā€resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of Ī±ā€iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Feā€“Nā€“C catalysts prepared by pyrolysis at 900ā€‰Ā°C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with endā€on bonded oxygen as one of the axial ligands

    Evolution of Glassy Carbon Microstructure: In Situ Transmission Electron Microscopy of the Pyrolysis Process

    Get PDF
    Glassy carbon is a graphene-rich form of elemental carbon obtained from pyrolysis of polymers, which is composed of three-dimensionally arranged, curved graphene fragments alongside fractions of disordered carbon and voids. Pyrolysis encompasses gradual heating of polymers above 900 degree C under inert atmosphere, followed by cooling to room temperature. Here we report on an experimental method to perform in situ high-resolution transmission electron microscopy (HR-TEM) for the direct visualization of microstructural evolution in a pyrolyzing polymer in the 500-1200 degree C temperature range. The results are compared with the existing microstructural models of glassy carbon. Reported experiments are performed at 80 kV acceleration voltage using MEMS-based heating chips as sample substrates to minimize any undesired beam-damage or sample preparation induced transformations. The outcome suggests that the geometry, expansion and atomic arrangement within the resulting graphene fragments constantly change, and that the intermediate structures provide important cues on the evolution of glassy carbon. A complete understanding of the pyrolysis process will allow for a general process tuning specific to the precursor polymer for obtaining glassy carbon with pre-defined properties.Comment: Revised version due to minor corrections in the text and addition of an autho

    3D Imaging of Nanomaterials by Discrete Tomography

    Get PDF

    Influence of particle size and fluorination ratio of CFā‚“ precursor compounds on the electrochemical performance of C-FeFā‚‚ nanocomposites for reversible lithium storage

    Get PDF
    Systematical studies of the electrochemical performance of CFx-derived carbonā€“FeF2 nanocomposites for reversible lithium storage are presented. The conversion cathode materials were synthesized by a simple one-pot synthesis, which enables a reactive intercalation of nanoscale Fe particles in a CFx matrix, and the reaction of these components to an electrically conductive Cā€“FeF2 compound. The pretreatment and the structure of the utilized CFx precursors play a crucial role in the synthesis and influence the electrochemical behavior of the conversion cathode material. The particle size of the CFx precursor particles was varied by ball milling as well as by choosing different C/F ratios. The investigations led to optimized Cā€“FeF2 conversion cathode materials that showed specific capacities of 436 mAh/g at 40 Ā°C after 25 cycles. The composites were characterized by Raman spectroscopy, X-Ray diffraction measurements, electron energy loss spectroscopy and TEM measurements. The electrochemical performances of the materials were tested by galvanostatic measurements

    Steering proton migration in hydrocarbons using intense few-cycle laser fields

    Get PDF
    Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.Comment: 5 pages, 4 figure
    • ā€¦
    corecore