695 research outputs found

    Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and Co-60 photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1 x 10^{13} 1 MeV equivalent neutrons / cm^2) are well described by empirical formulae for bulk damage. The Co-60 photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO_2-Si interface, a large shift of the flatband voltage and a decrease of the hole mobility.Comment: 33 pages, 25 figures, 3 tables, accepted for publication in NIM

    Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 microns, with five intermediate strips (20 micron strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided micro-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM

    The Presampler for the Forward and Rear Calorimeter in the ZEUS Detector

    Get PDF
    The ZEUS detector at HERA has been supplemented with a presampler detector in front of the forward and rear calorimeters. It consists of a segmented scintillator array read out with wavelength-shifting fibers. We discuss its desi gn, construction and performance. Test beam data obtained with a prototype presampler and the ZEUS prototype calorimeter demonstrate the main function of this detector, i.e. the correction for the energy lost by an electron interacting in inactive material in front of the calorimeter.Comment: 20 pages including 16 figure

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos

    Limits on the effective quark radius from inclusive epep scattering at HERA

    Get PDF
    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current epep scattering corresponding to a luminosity of around 1 fb1^{-1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive epep data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.4310160.43\cdot 10^{-16} cm.Comment: 10 pages, 4 figures, accepted by Phys. Lett.

    The small angle rear tracking detector of ZEUS

    Get PDF
    Abstract The design, construction, installation, and performance of the small angle rear tracking detector of the ZEUS experiment are described. The results on electron position measurement, electron energy correction, and background reduction at the first-level trigger are presented. The impact on the measurement of the proton structure function is discussed

    Measurement of the cross-section ratio sigma_{psi(2S)}/sigma_{J/psi(1S)} in deep inelastic exclusive ep scattering at HERA

    Get PDF
    The exclusive deep inelastic electroproduction of ψ(2S)\psi(2S) and J/ψ(1S)J/\psi(1S) at an epep centre-of-mass energy of 317 GeV has been studied with the ZEUS detector at HERA in the kinematic range 2<Q2<802 < Q^2 < 80 GeV2^2, 30<W<21030 < W < 210 GeV and t<1|t| < 1 GeV2^2, where Q2Q^2 is the photon virtuality, WW is the photon-proton centre-of-mass energy and tt is the squared four-momentum transfer at the proton vertex. The data for 2<Q2<52 < Q^2 < 5 GeV2^2 were taken in the HERA I running period and correspond to an integrated luminosity of 114 pb1^{-1}. The data for 5<Q2<805 < Q^2 < 80 GeV2^2 are from both HERA I and HERA II periods and correspond to an integrated luminosity of 468 pb1^{-1}. The decay modes analysed were μ+μ\mu^+\mu^- and J/ψ(1S)π+πJ/\psi(1S) \,\pi^+\pi^- for the ψ(2S)\psi(2S) and μ+μ\mu^+\mu^- for the J/ψ(1S)J/\psi(1S). The cross-section ratio σψ(2S)/σJ/ψ(1S)\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)} has been measured as a function of Q2,WQ^2, W and tt. The results are compared to predictions of QCD-inspired models of exclusive vector-meson production.Comment: 24 pages, 8 figure
    corecore