3 research outputs found

    Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions

    Get PDF
    The CHORUS experiment, designed to search for νμντ\nu_{\mu}\to\nu_{\tau} oscillations, consists of a nuclear emulsion target and electronic detectors. In this paper, results on the production of charged particles in a small sample of charged-current neutrino-- and anti-neutrino--nucleus interactions at high energy are presented. For each event, the emission angle and the ionization features of the charged particles produced in the interaction are recorded, while the standard kinematic variables are reconstructed using the electronic detectors. The average multiplicities for charged tracks, the pseudo-rapidity distributions, the dispersion in the multiplicity of charged particles and the KNO scaling are studied in different kinematical regions. A study of quasi-elastic topologies performed for the first time in nuclear emulsions is also reported. The results are presented in a form suitable for use in the validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure

    Low-molecular-weight heparin-conjugated liposomes with improved stability and hemocompatibility

    No full text
    Multilamellar vesicles (MLV) containing phosphatidyl choline (PC), cholestrol (CHOL), and stearylamine (SA) in the molar ratio of 7:2:0.2 were prepared by the thin film hydration method. Low-molecular-weight heparin (LMWH, MW: 3000) was conjugated with the MLV using carbodiimide (EDC). Infrared, Raman, and nuclear magnetic resonance spectra and DSC of each sample (MLV, LMWH, and MLV-LMWH) were obtained, enabling the authors to determine the chemical changes that occurred in the MLV structure at the end of the conjugation step. In addition, the changes in the chemical structures of the conjugated samples were revealed by the use of elemental analysis. Particle size analysis was used to determine the difference between the sizes of MLV and MLV-LMWH. In order to study the effect of LMWH on the behavior of MLV-LMWH in blood, osmotic fragility (in saline and plasma), hemolytic activity, and plasma recalcification time tests were carried out. These tests showed that it was possible to construct liposomes that would not induce reactions in the blood and would have potentially longer half-lives in the circulation
    corecore