19 research outputs found

    Urinary NMR Profiling in Pediatric Acute Kidney Injury—A Pilot Study

    Get PDF
    Acute kidney injury (AKI) in critically ill children and adults is associated with significant short- and long-term morbidity and mortality. As serum creatinine- and urine output-based definitions of AKI have relevant limitations, there is a persistent need for better diagnostics of AKI. Nuclear magnetic resonance (NMR) spectroscopy allows for analysis of metabolic profiles without extensive sample manipulations. In the study reported here, we examined the diagnostic accuracy of NMR urine metabolite patterns for the diagnosis of neonatal and pediatric AKI according to the Kidney Disease: Improving Global Outcomes (KDIGO) definition. A cohort of 65 neonatal and pediatric patients (0–18 years) with established AKI of heterogeneous etiology was compared to both a group of apparently healthy children (n = 53) and a group of critically ill children without AKI (n = 31). Multivariate analysis identified a panel of four metabolites that allowed diagnosis of AKI with an area under the receiver operating characteristics curve (AUC-ROC) of 0.95 (95% confidence interval 0.86–1.00). Especially urinary citrate levels were significantly reduced whereas leucine and valine levels were elevated. Metabolomic differentiation of AKI causes appeared promising but these results need to be validated in larger studies. In conclusion, this study shows that NMR spectroscopy yields high diagnostic accuracy for AKI in pediatric patients

    Nondestructive imaging of atomically thin nanostructures buried in silicon

    Get PDF
    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus ÎŽ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers.ISSN:2375-254

    Genetic landscape of pediatric acute liver failure of indeterminate origin.

    Get PDF
    BACKGROUND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. METHODS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants. CONCLUSION This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics

    In operando charge transport imaging of atomically thin dopant nanostructures in silicon

    No full text
    Novel approaches to materials design, fabrication processes and device architectures have accelerated next-generation electronics component production, pushing device dimensions down to the nano- and atomic-scale. For device metrology methods to keep up with these developments, they should not only measure the relevant electrical parameters at these length-scales, but ideally do so during active operation of the device. Here, we demonstrate such a capability using the full functionality of an advanced scanning microwave/scanning capacitance/kelvin probe atomic force microscope to inspect the charge transport and performance of an atomically thin buried phosphorus wire device during electrical operation. By interrogation of the contact potential, carrier density and transport properties, we demonstrate the capability to distinguish between the different material components and device imperfections, and assess their contributions to the overall electric characteristics of the device in operando. Our experimental methodology will facilitate rapid feedback for the fabrication of patterned nanoscale dopant device components in silicon, now important for the emerging field of silicon quantum information technology. More generally, the versatile setup, with its advanced inspection capabilities, delivers a comprehensive method to determine the performance of nanoscale devices while they function, in a broad range of material systems

    Evaluation of Right Ventricular Function in Patients with Propionic Acidemia—A Cross-Sectional Study

    No full text
    (1) Background: In propionic acidemia (PA), myocardial involvement often leads to progressive cardiac dysfunction of the left ventricle (LV). Cardiomyopathy (CM) is an important contributor to mortality. Although known to be of prognostic value in CM, there are no published data on right ventricular (RV) function in PA patients. (2) Methods: In this cross-sectional single-center study, systolic and diastolic RV function of PA patients was assessed by echocardiography, including frequency, onset, and combinations of echocardiographic parameters, as well as correlations to LV size and function. (3) Results: N = 18 patients were enrolled. Tricuspid annulus S’ was abnormal in 16.7%, RV-longitudinal strain in 11.1%, tricuspid annular plane systolic excursion (TAPSE) in 11.1%, Tricuspid valve (TV) E/e’ in 33.3%, and TV E/A in 16.7%. The most prevalent combinations of pathological parameters were TV E/A + TV E/e’ and TAPSE + TV S’. With age, the probability of developing abnormal RV function increases according to age-dependent normative data. There is a significant correlation between TAPSE and mitral annular plane systolic excursion (MAPSE), and RV/LV-longitudinal strain (p ≀ 0.05). N = 5 individuals died 1.94 years (mean) after cardiac evaluation for this study, and all had abnormal RV functional parameters. (4) Conclusions: Signs of diastolic RV dysfunction can be found in up to one third of individuals, and systolic RV dysfunction in 16.7% of individuals in our cohort. RV function is impaired in PA patients with a poor outcome. RV functional parameters should be used to complement clinical and left ventricular echocardiographic findings

    Momentum‐Space Imaging of Ultra‐Thin Electron Liquids in ή‐Doped Silicon

    No full text
    Abstract Two‐dimensional dopant layers (ή‐layers) in semiconductors provide the high‐mobility electron liquids (2DELs) needed for nanoscale quantum‐electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one‐electron spectral function that can be measured by angle‐resolved photoemission spectroscopy (ARPES). Here, buried 2DEL ή‐layers in silicon are measured with soft X‐ray (SX) ARPES to obtain detailed information about their filled conduction bands and extract device‐relevant properties. This study takes advantage of the larger probing depth and photon energy range of SX‐ARPES relative to vacuum ultraviolet (VUV) ARPES to accurately measure the ή‐layer electronic confinement. The measurements are made on ambient‐exposed samples and yield extremely thin (< 1 nm) and dense (≈1014 cm−2) 2DELs. Critically, this method is used to show that ή‐layers of arsenic exhibit better electronic confinement than ή‐layers of phosphorus fabricated under identical conditions
    corecore