433 research outputs found

    The s\ell^s-boundedness of a family of integral operators on UMD Banach function spaces

    Full text link
    We prove the s\ell^s-boundedness of a family of integral operators with an operator-valued kernel on UMD Banach function spaces. This generalizes and simplifies earlier work by Gallarati, Veraar and the author, where the s\ell^s-boundedness of this family of integral operators was shown on Lebesgue spaces. The proof is based on a characterization of s\ell^s-boundedness as weighted boundedness by Rubio de Francia.Comment: 13 pages. Generalization of arXiv:1410.665

    FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)

    Get PDF
    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.Comment: Poster shown at HEAD 2010, Big Island, Hawaii, March 1-4, 201

    Maximal regularity for non-autonomous equations with measurable dependence on time

    Get PDF
    In this paper we study maximal LpL^p-regularity for evolution equations with time-dependent operators AA. We merely assume a measurable dependence on time. In the first part of the paper we present a new sufficient condition for the LpL^p-boundedness of a class of vector-valued singular integrals which does not rely on H\"ormander conditions in the time variable. This is then used to develop an abstract operator-theoretic approach to maximal regularity. The results are applied to the case of mm-th order elliptic operators AA with time and space-dependent coefficients. Here the highest order coefficients are assumed to be measurable in time and continuous in the space variables. This results in an Lp(Lq)L^p(L^q)-theory for such equations for p,q(1,)p,q\in (1, \infty). In the final section we extend a well-posedness result for quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear parabolic PDE to which the result can be applied.Comment: Application to a quasilinear equation added. Accepted for publication in Potential Analysi

    FACT -- The G-APD revolution in Cherenkov astronomy

    Full text link
    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 201

    Matrix-comparative genomic hybridization from multicenter formalin-fixed paraffin-embedded colorectal cancer tissue blocks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of genomic signatures of colorectal cancer for risk stratification requires the study of large series of cancer patients with an extensive clinical follow-up. Multicentric clinical studies represent an ideal source of well documented archived material for this type of analyses.</p> <p>Methods</p> <p>To verify if this material is technically suitable to perform matrix-CGH, we performed a pilot study using macrodissected 29 formalin-fixed, paraffin-embedded tissue samples collected within the framework of the EORTC-GI/PETACC-2 trial for colorectal cancer. The scientific aim was to identify prognostic genomic signatures differentiating locally restricted (UICC stages II-III) from systemically advanced (UICC stage IV) colorectal tumours.</p> <p>Results</p> <p>The majority of archived tissue samples collected in the different centers was suitable to perform matrix-CGH. 5/7 advanced tumours displayed 13q-gain and 18q-loss. In locally restricted tumours, only 6/12 tumours showed a gain on 13q and 7/12 tumours showed a loss on 18q. Interphase-FISH and high-resolution array-mapping of the gain on 13q confirmed the validity of the array-data and narrowed the chromosomal interval containing potential oncogenes.</p> <p>Conclusion</p> <p>Archival, paraffin-embedded tissue samples collected in multicentric clinical trials are suitable for matrix-CGH analyses and allow the identification of prognostic signatures and aberrations harbouring potential new oncogenes.</p

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
    corecore