36 research outputs found
The value of BECCS in IAMs: a review
Purpose of Review Integrated assessment model (IAM) scenarios consistent with Paris Agreement targets involve large negative emission technologies (NETs), mostly bioenergy with carbon capture and storage (BECCS). Such reliance on BECCS implies IAMs assign it a high value. Past analyses on the value of BECCS in IAMs have not explicitly addressed the role of model structure and assumptions as value drivers. This paper examines the extent to which the value of BECCS in IAMs is enhanced by model structure constraints and assumptions. Recent Findings Predominant use of high discount rates (3.5–5%) means models opt for delayed-action strategies for emissions mitigation that lead to high levels of cumulative net-negative emissions, while lower discount rates lead to reduce reliance on NETs. Until recently in the literature, most models limited NET options to only BECCS and afforestation, but introduction of other CDR options can reduce BECCS deployment. Constraints on grid penetration of variable renewable energy (VRE) is a determining factor on the level of BECCS deployment across models, and more constrained grid penetration of VREs leads to more BECCS in electricity generation. Summary This paper concludes BECCS derives significant value not only from the existing structure of IAMs but also from what is not represented in models and by predominant use of high discount rates. Omissions include NETs other than BECCS and deforestation, low-carbon innovation in end-use technologies, grid resilience to intermittent sources, and energy use in agriculture production. As IAMs increasingly endogenize such constraints, the value of BECCS in resulting scenarios is likely to be dampened
COVID-19 recovery packages can benefit climate targets and clean energy jobs, but scale of impacts and optimal investment portfolios differ among major economies
To meet the Paris temperature targets and recover from the effects of the pandemic, many countries have launched economic recovery plans, including specific elements to promote clean energy technologies and green jobs. However, how to successfully manage investment portfolios of green recovery packages to optimize both climate mitigation and employment benefits remains unclear. Here, we use three energy-economic models, combined with a portfolio analysis approach, to find optimal low-carbon technology subsidy combinations in six major emitting regions: Canada, China, the European Union (EU), India, Japan, and the United States (US). We find that, although numerical estimates differ given different model structures, results consistently show that a >50% investment in solar photovoltaics is more likely to enable CO2 emissions reduction and green jobs, particularly in the EU and China. Our study illustrates the importance of strategically managing investment portfolios in recovery packages to enable optimal outcomes and foster a post-pandemic green economy
The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations
The energy-water-land nexus represents a critical leverage future policies must draw upon to reduce trade-offs between sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints. Moreover, existing tools and data are not always made openly available or are implemented across disparate modeling platforms that can be difficult to link directly with modern scientific computing tools and databases. In this paper, we present the Nexus Solutions Tool (NEST): a new open modeling platform that integrates multi-scale energy-water-land resource optimization with distributed hydrological modeling. The new approach provides insights into the vulnerability of water, energy and land resources to future socioeconomic and climatic change and how multi-sectoral policies, technological solutions and investments can improve the resilience and sustainability of transformation pathways while avoiding counterproductive interactions among sectors. NEST can be applied at different spatial and temporal resolutions, and is designed specifically to tap into the growing body of open access geospatial data available through national inventories and the earth system modeling community. A case study analysis of the Indus River Basin in South Asia demonstrates the capability of the model to capture important interlinkages across system transformation pathways towards the United Nations' Sustainable Development Goals, including the intersections between local and regional transboundary policies and incremental investment costs from rapidly increasing regional consumption projected over the coming decades
Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison.
Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs
A multi-model analysis of long-term emissions and warming implications of current mitigation efforts
Most of the integrated assessment modelling literature focuses on cost-effective pathways towards given temperature goals. Conversely, using seven diverse integrated assessment models, we project global energy CO2 emissions trajectories on the basis of near-term mitigation efforts and two assumptions on how these efforts continue post-2030. Despite finding a wide range of emissions by 2050, nearly all the scenarios have median warming of less than 3 °C in 2100. However, the most optimistic scenario is still insufficient to limit global warming to 2 °C. We furthermore highlight key modelling choices inherent to projecting where emissions are headed. First, emissions are more sensitive to the choice of integrated assessment model than to the assumed mitigation effort, highlighting the importance of heterogeneous model intercomparisons. Differences across models reflect diversity in baseline assumptions and impacts of near-term mitigation efforts. Second, the common practice of using economy-wide carbon prices to represent policy exaggerates carbon capture and storage use compared with explicitly modelling policies
Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system
The Nationally Determined Contributions (NDCs) to the Paris Agreement (PA) submitted so far do not put the world on track to meet the targets of the Agreement and by 2020 countries should ratchet up ambition in the new round of NDCs. Brazil’s NDC to the PA received mixed reviews and has been rated as “medium” ambition. We use the Brazil Land Use and Energy System (BLUES) model to explore low-emission scenarios for Brazil for the 2010–2050 period that cost-effectively raise ambition to levels consistent with PA targets. Our results reinforce the fundamental role of the agriculture, forest, and land use (AFOLU) sectors and explore inter-sectoral linkages to power generation and transportation. We identify transportation as a prime candidate for decarbonization, leveraging Brazil’s already low-carbon electricity production and its high bioenergy production. Results indicate the most important mitigation measures are electrification of the light-duty vehicle (LDV) fleet for passenger transportation, biodiesel and biokerosene production via Fischer-Tropsch synthesis from lignocellulosic feedstock, and intensification of agricultural production. The use of carbon capture and storage (CCS) as well as netzero deforestation make significant contributions. We identify opportunities for Brazil, but synergies and trade-offs across sectors should be minded when designing climate policies
Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story
This work evaluates implications of incorporating LCA-GHG (life cycle assessment of GHG emissions) into the optimisation of the power generation mix of Brazil through 2050, under baseline and low-carbon scenarios. Furthermore, this work assesses the impacts of enacting a tax on LCA-GHG emissions as a strategy to mitigate climate change. To this end, a model that integrates regional life cycle data with optimised energy scenarios was developed using the MESSAGE-Brazil integrated model. Following a baseline trend, the power sector in Brazil would increasingly rely on conventional coal technologies. GHG emissions from the power sector in 2050 are expected to increase 15-fold. When enacting a tax on direct-carbon emissions, advanced coal and onshore wind technologies become competitive. GHG emissions peak at 2025 and decrease afterwards, reaching an emission level 40% lower in 2050 than that of 2010. However, if impacts were evaluated through the entire life cycle of power supply systems, LCA-GHG emissions would be 50% higher in 2050 than in 2010. This is due to loads associated with the construction of plant infrastructures and extraction and processing of fossil fuel resources. Thus, taxes might not be as effective in tackling GHG emissions as shown by past studies, if they are only applied to direct emissions