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SCIENCE FOR SOCIETY A low-carbon transition is urgently needed to meet the 1.5C Paris climate targets.
The coronavirus disease 2019 (COVID-19) pandemic, however, has imposed widespread economic bur-
dens, including declines in investments and employment, which have hindered the development of many
sectors, including clean energy. There is an opportunity to combine post-pandemic recovery packages
with green growth aspirations, but the extent to which investments can be managed in a way that achieves
both employment growth and greenhouse gas emissions reductions, given varying socioeconomic condi-
tions, remains unclear.We attempt to resolve this issue by evaluating different investment strategies across
six major emitters (Canada, China, the European Union (EU), India, Japan, and the US) using three energy-
economic computational models. Our estimates suggest that green recovery plans should allocate at least
50% of funds to solar power production to obtain both CO2 emissions reductions and employment gains.
This is particularly the case in the EU and China.
SUMMARY
To meet the Paris temperature targets and recover from the effects of the pandemic, many countries have
launched economic recovery plans, including specific elements to promote clean energy technologies and
green jobs. However, how to successfully manage investment portfolios of green recovery packages to opti-
mize both climatemitigation and employment benefits remains unclear. Here, we use three energy-economic
models, combined with a portfolio analysis approach, to find optimal low-carbon technology subsidy com-
binations in six major emitting regions: Canada, China, the European Union (EU), India, Japan, and the United
States (US).We find that, although numerical estimates differ given differentmodel structures, results consis-
tently show that a >50% investment in solar photovoltaics is more likely to enable CO2 emissions reduction
and green jobs, particularly in the EU and China. Our study illustrates the importance of strategically manag-
ing investment portfolios in recovery packages to enable optimal outcomes and foster a post-pandemic
green economy.
INTRODUCTION

The pandemic has posed significant challenges to human soci-

eties, beyond public health: following drastic policy responses
1042 One Earth 5, 1042–1054, September 16, 2022 ª 2022 The Auth
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to curb virus spread, economic activities forcefully paused.

This, in turn, resulted in an impending economic recession with

multiple socioeconomic implications,1 including for the labor

market. Indicatively about 1.8 million jobs had been lost in the
or(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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EU between September 2019 and September 2020,2 while early

estimates in the US foresaw a loss of about 20 million jobs,3 with

expectations for a lagging employment recovery.4 Narrowing

down to the energy sector, coronavirus disease 2019 (COVID-

19) resulted not only in short-term delays in deployment but

also in permanent job losses due to project cancellations along

the global energy supply chain.5 Notably, renewable energy pro-

jects have been affected worldwide with considerable employ-

ment implications, resulting from, for example, solar photovol-

taics (PV) and wind turbine material supply-chain disruptions

from China, and renewable energy technology suppliers placing

staff on furlough.6,7 It has been estimated that almost 600,000

clean energy jobs were lost in the United States over the course

of 2020, more than twice the total clean energy jobs gained in the

preceding three years.8 Voices in science and policy alike have

advocated for a green stimulus focusing on clean energy tech-

nologies, to align economic recovery with climate mitigation ef-

forts, and hopes were high that the recovery from the pandemic

could become a turning point in public support to fight the

climate crisis in the early stage of the pandemic.9,10 Despite a

relatively small chunk of global recovery spending being chan-

neled toward clean-energy-related projects,11 there remains a

wide range of possible clean technology portfolios that could

benefit from this stimulus, while helping drive the low-carbon

transition and boosting energy-sector job creation.12

In literature, there are positive indications that a transition from

fossils to renewables typically creates net jobs,13 after account-

ing for workforce redistribution among sectors.14–16 Recent

work has showcased large employment gains from a complete

shift to a fully renewable power sector,17 even more so for com-

bined efforts in heat, transport, and desalination,18 while broader

Paris-compliantmitigationpathways showsimilar findings for en-

ergy-sector employment.19 However, evidence on COVID-19

and associated recovery efforts is still scarce. In this respect,

macroeconomic and integrated assessment models (IAMs)

have been used to assess the pandemic’s impacts on CO2

emissions20 and macroeconomic indicators,21 as well as its me-

dium- to long-term implications for theenergy transition22 and the

goals of the Paris Agreement.23 Regarding the estimation on the

potential outcomes of post-pandemic green recovery, modeling

efforts have shed light on the gap between pledged recovery

packages and the Paris-compliant investment needs,24 as well

as the impacts of possible green ways forward.25,26 However,

of these studies, only one considered employment implications26

from a macroeconometric perspective and, like similar macro-

economic modeling studies,27–31 provided only aggregated

economy-wide insights. There is evidence from theGlobal Finan-

cial Crisis of 2008–2009 that renewable energy stimulus has a

higher jobs impact than other stimulus measures.9 However, it

is important to consider specific regional dynamics in the context

of specific stimulusmeasures. In this context, the extent towhich

green investments aspart of the recovery stimulus can contribute

to both climatemitigation and specifically energy-sector employ-

ment gains remains understudied, with no specific IAM-based

analyses to our knowledge.

Here we contribute to this debate by studying the optimal allo-

cation of announced recovery packages toward clean energypro-

jects in six major emitters (Canada, China, EU, India, Japan, and

the United States, together covering the majority of announced
green recovery funds globally) in terms of further CO2 emissions

cuts and employment gains against a pre-pandemic current-pol-

icy baseline.32 To improve the accuracy and robustness of the es-

timates, our adopted method overcomes three methodological

challenges. First, acknowledging IAM analyses are highly depen-

dent on themodel used and the underlying economic-engineering

approach,33,34we employ a diverse ensembleof threewell-estab-

lished IAMs (GCAM-PR, TIAM-Grantham, GEMINI-E3) to under-

stand how each modeling approach affects outcomes. Second,

building on recent efforts,35,36 we link these IAMs with employ-

ment factor databases that provide the necessary granularity for

targeted technology interventions,37 to address criticisms on

model representation of energy-economy feedbacks38 and

employment considerations.39 Third, since IAMs typically only

optimize costs in respect to emissions constraints, we integrate

the models with portfolio analysis,40 to economically integrate

and simultaneously optimize emissions cuts with near- and long-

term employment gains. Our results indicate that the optimal allo-

cation, i.e., best investment portfolios as derived from integrating

IAMs with a portfolio analysis framework, of COVID-19 recovery

packages over power-sector technologies in China and the EU

have the potential to significantly contribute to their respective

2030 mitigation targets, while also employing a significant share

of pandemic-related unemployed population until 2030,

comparedwithwhere the two regionswouldbeheadedgiven their

current policy efforts and absent any recovery finance spending.

For China, this means that optimal allocation of the available re-

covery funds in a portfolio of clean energy supply technologies

can cut up to two times the CO2 emissions gap of the country’s

2030 nationally determined contribution (NDC) target of reducing

the carbon intensity of its economy by at least 65% relative to

2005, while in the same period covering 4%–22% of the jobs

lost due to COVID-19. For the EU, and depending on the three

models’ emissions trajectories, optimal recovery spending could

help approach the ‘‘Fit for 55’’ CO2 emissions target (i.e., reduce

CO2 emissions by at least 55% by 2030, against 1990 levels) by

7%–48%, while mitigating the pandemic-related job losses by

up to around9%by the endof the decade. Packages in theUnited

States and India aremeasured to contribute significantly less,with

contributions in the range of 0%–3%. The expected impact of

packages in Canada lies in between, while results for Japan are

inconclusive due to stronger model variation. Obtained optimal

portfolios suggest that, when optimally allocating recovery funds

betweenemission reduction andemploymentcreationobjectives,

most countries would invest over 50% of their energy-focused

green recovery packages in financing PV, over 10% in onshore

wind, while investments in other clean energy technologies

strongly depend on the country, preferred objective, and model

applied. Overall, our results suggest that the recovery response

to the COVID-19 pandemic can provide a strong green stimulus

in which economic recovery is aligned with improved mitigation

efforts.

RESULTS

Method summary
Financial support for clean energy technologies may have an

impact on greenhouse gas (GHG) emissions and energy-sector

jobs through several channels. Due to the nature of clean energy
One Earth 5, 1042–1054, September 16, 2022 1043



Figure 1. Schematic overview of how tech-

nology support may affect emissions and

employment

Two main mechanisms are considered here. First,

supporting a specific technology through subsidies

can lead to a capacity increase for this technology,

which can subsequently affect emissions and jobs,

based on the relative emissions and employment

factors of the technology. Second, increasing the

capacity of a technology can potentially substitute

capacity from another technology on the total en-

ergy system, leading to more changes in emissions

and jobs. For instance, additional renewable energy

capacity can substitute capacity from emissions-

intensive technologies. The potential for sub-

stitutions is based on the capacity factors of all

technologies in the system as well as their relative

levelised costs of energy (LCOEs) and the elasticity

of substitution.
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technologies, which are usually more labor-intensive19,41 and, by

definition, less carbon-intensive comparedwith their conventional

alternatives, the net impact of such support tends to simulta-

neouslycreateadditional energy-sector jobsandavoidGHGemis-

sions. However, this does notmake financial support for clean en-

ergy technologies by definition a cost-efficient policy instrument,

nor may all clean energy technologies be equally worth financing.

The effectiveness of financial support is strongly technology

and region dependent, due to a mix of factors, such as the

cost-effectiveness of each technology, the impact on the overall

energy mix, and the relative differences in emission and employ-

ment factors of the supported technology and the replaced alter-

natives. Furthermore, the region-specific context is a crucial fac-

tor. A classic example of inefficient financing is to provide

support for new investments that would have occurred also in

the absence of such support.42 Since a regulator cannot discrim-

inate between financing those investments that are additional

and those that are not, large sums of finance could flow as a

windfall gain to investors that were anyway going to invest in a

certain technology. There may also be other physical limits that

constrain the effectiveness of additional financial support, such

as the intermittency of renewable technologies or the availability

of bioenergy resources. In such cases, excess capacity driven

by financial support may be left idle or its production curtailed.43

Combining the two previous examples, there may also be a tem-

poral inefficiency; e.g., if short-term financial support pushes a

technology’s capacity toward integration limits that would have

been reached anyway at a later stage. In such a case, financial

support in one period would only have short-term effects as

they reduce investment opportunities in the next period.

Due to all these factors that affect the CO2 emissions and

employment impacts of financial support (Figure 1), IAMs with

detailed energy system representation are useful tools to find

an optimal technology portfolio for planned financial support

programs.We approach this task by applying increasing subsidy

rates individually for nine clean technologies on top of region-

specific (pre-pandemic) energy and climate policies,32 and mea-

sure the marginal effectiveness in reducing emissions and

increasing employment using three IAMs that differ significantly

in their solution mechanisms and temporal dynamics (e.g., per-

fect versus myopic foresight). We then apply a robust portfolio
1044 One Earth 5, 1042–1054, September 16, 2022
analysis for each region-model combination to find a Pareto-

optimal set (i.e., a set of points where no improvements are

possible in one metric without affecting at least one other metric)

of technology portfolios, optimizing over emissions reduction

and employment creation within a pre-announced green

COVID-19 recovery budget for each region.40 The obtained Par-

eto frontiers (the sets of all Pareto-efficient solutions) aim to iden-

tify trade-offs between the cumulative amount of CO2 emissions

abated, the number of job-years created over this entire decade

(2021–2030) (hereafter ‘‘full-decade employment’’), and the

number of short-term job-years (up to 2025) (hereafter ‘‘short-

term employment’’) created. The first two objectives can be

considered as overarching objectives that policymakers may

have when deciding on financial support packages. The latter

objective has been chosen for its relevance to the need for re-

covery from the COVID-19 crisis and the typical goal of policy-

makers to seek immediate returns on their spendings. See

experimental procedures for all details on the applied IAMs

and recovery packages, and the detailed methodology.

Potential impacts of COVID-19 recovery packages
With a few exceptions, nearly all portfolios simultaneously abate

CO2 emissions and have a positive net impact on both long-term

and short-term employment (Figure 2), confirming the positive

synergy between employment and clean energy transition found

in the literature.13–15,17,19 However, for most Pareto frontiers, we

find a relative trade-off between emissions abatement and full-

decade employment creation, depending on the technologies

financed. In three cases (Japan and EU with TIAM-Grantham,

and India with GCAM-PR), there is a subset of portfolios reducing

employment. In most analyses with trade-offs, we find that short-

term employment is closely linked to full-decade employment,

meaning that the technologies providing net employment gains

until 2030 also create most short-term jobs. However, in three

cases (China, EU, and JapanwithGCAM-PR), short-termemploy-

ment is at odds with full-decade employment, and, in fact, more

short-term jobs are created in portfolios maximizing emissions

abatement. An aggregated representation of cross-model ranges

per region is provided in Figure S1, further highlighting the diverse

trade-offs among the three objectives observed in each region as

well as showcasing the different model outcomes.



Figure 2. Scatterplots including all Pareto-

optimal scenarios in each combination of

models and countries, based on three objec-

tives

The x axis represents cumulative emissions cuts by

2030, y axis cumulative net employment change by

2030, and color axis cumulative net employment

change by 2025. Dot sizes represent robustness of

each portfolio in the Monte Carlo simulation (with 1

indicating a robustness of 100% following the

robustness definition in the experimental proced-

ures). Results show that all six regions can achieve

further emissions cuts while creating energy-sector

jobs in the short and long term, by pursuing a green

recovery from COVID-19. Relative trade-offs exist

between CO2 emissions abatement and job crea-

tion, as well as in some cases between short-term

and long-term employment gains. The full results

with all portfolios and objective contributions can

be found in https://doi.org/10.5281/zenodo.

6998390 labeled Data S5–D20.
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Taking an average of all portfolios weighted by their robust-

ness level (i.e., the likelihood that a portfolio is found on the Par-

eto frontier, see experimental procedures) for each of the ana-

lyses (Table 1) gives an impression of the overall impact and

technology mix of each country-model combination. While the

inter-model uncertainty is too big to provide precise answers,

overall tendencies can be identified. Emissions impacts of

COVID-19 recovery packages in the EU, China and Canada

are likely to have a non-negligible contribution (>4%) to closing

the emissions gap between pre-pandemic policy packages

and renewed NDC targets, the latter being compatible with a

�2�C future.44,45 The relatively small green recovery packages

in the United States and India are likely insufficient, while inter-

model uncertainty is too strong for Japan to draw conclusions.

In terms of employment, the recovery packages in the EU and

China would put a relevant share of the new pandemic-driven

unemployed back to work by an increase in energy-sector

employment, predominantly in the short term. Employment

gains are less profound for the United States, India and Canada,

while the USA and India experienced the highest absolute

decrease in employment among the countries analyzed in this

study.4,46 For Japan, inter-model differences are too big to

draw a conclusion.

Investment portfolios for optimized outcomes
A key policy question from this study is how to distribute recov-

ery funds over different clean technologies to achieve certain ob-
One Ear
jectives. Overall, we find that solar PV,

which has become highly cost-competi-

tive over the past decade and still relatively

labor intensive in the construction phase,

is the preferred clean energy technology

for financial support in most analyses

and across regions, while onshore wind

also takes up a relevant share of most re-

covery packages. The other technologies,

especially those with low penetration

levels under the current policies baseline,
play an important role in some model-region-objective niches,

with technology preferences tending to differ significantly when

optimizing one objective or another (Figure 3). For example, re-

sults from GCAM-PR indicate a considerable role (>20% of the

recovery budget) for offshore wind and biofuels in maximizing

full-decade employment in the EU, and for nuclear energy in

the EU, China, India, and Japan. Results from TIAM-Grantham

give an important role to geothermal energy in reducing emis-

sions in Japan and the United States, to concentrated solar po-

wer (CSP) in India and to biomass in Canada, in line with poten-

tials suggested in the literature.47–49 Hydroelectricity (TIAM-

Grantham) and biomass (GEMINI-E3) play an important role in

maximizing energy jobs in India in the longer run (for potentials

see Chaurasiya et al.50 Hiloidhari et al.51). This highlights the

value of modeling these recovery packages on top of pre-

modeled, region-specific baselines and employing a diverse

set of models and policy interactions to identify which technol-

ogy support is more cost-effective in each region.

Role of model diversity
Despite soft harmonization of techno-economic assumptions

and applied pre-pandemic energy and climate policies,52 out-

comes from the three employed models differ substantially: the

average outcome differences of the same subsidy package are

up to 10-fold for emissions (China, United States) and 6-fold

for employment (China), while there are also pronounced differ-

ences in the optimal technology portfolios (Table 1). There are
th 5, 1042–1054, September 16, 2022 1045
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Table 1. Average outcomes and technology portfolios per country-model combination

Region

(green

recovery

budget) Model

Outcome on each objective

(absolute terms)a Objectives relative to targets Technology portfolio mixa (% of subsidy budget)

Biomass

(%)

Hydro

(%)

Biofuels

(%)

Accumulated

CO2

abatement

(million tons

CO2)

Energy-

sector

jobs 2021–

2030

(thousand

job-years)

Energy-

sector

jobs 2021–

2025

(thousand

job-years)

Emissions

reductions

relative to

NDC target

gapb

(% of gap)

New energy-

sector jobs

relative to

jobs lost in

COVID-19

crisisc

(% 2021–

2030)

New energy-

sector jobs

relative to

jobs lost in

COVID-19

crisisc

(% 2021–

2025) PV CSP

Onshore

wind (%)

Offshore

wind (%)

Geothermal

(%)

Nuclear

(%)

EU

(96 b$)

GCAM 645 1,238 804 29.50 9.20 11.94 0.00 0.00 53.40 12.80 0.00 15.30 0.00 NA 18.60

TIAM 1,839 677 948 48.30 5.03 14.08 78.80 4.20 7.20 2.30 0.00 0.20 5.70 1.50 NA

GEMINI-

E3

269 1,249 977 6.70 9.28 14.51 74.8d 16.3e NA NA 8.90 NA NA

China

(60 b$)

GCAM 197 403 780 5.40 3.82 14.78 46.70 0.00 19.40 0.90 0.30 31.70 0.80 NA 0.20

TIAM 2,257 1,490 1,262 210.40 14.13 23.93 54.40 1.80 23.80 2.10 2.20 0.00 14.60 1.10 NA

GEMINI-

E3

872 2,280 2,712 NA 21.62 51.43 94.6d 2.1e NA NA 3.20 NA NA

United

States

(26 b$)

GCAM 116 424 445 1.30 1.53 3.21 88.00 0.00 5.90 1.80 0.10 0.40 0.50 NA 3.20

TIAM 1164 438 405 12.20 1.58 2.91 68.70 0.50 16.50 2.60 7.80 0.00 0.50 3.40 NA

GEMINI-

E3

169 590 591 1.80 2.12 4.26 91.6d 0e NA NA 8.40 NA NA

India

(9 b$)

GCAM 43 56 47 1.20 0.19 0.33 30.10 0.00 30.00 1.70 0.20 33.30 0.10 NA 4.60

TIAM 877 138 95 NA 0.48 0.66 74.00 2.20 7.00 0.00 0.00 0.00 1.10 15.40 NA

GEMINI-

E3

90 201 207 2.90 0.69 1.43 78.3d 6.9e NA NA 14.70 NA NA

Japan

(6 b$)

GCAM 25 61 82 1.50 2.20 6.10 75.50 0.00 6.90 0.40 0.40 14.10 0.80 NA 1.90

TIAM 503 �96 �19 36.60 �3.60 �1.40 57.20 0.00 4.50 2.30 23.20 6.50 3.60 2.70 NA

Canada

(3 b$)

GCAM 29 62 63 4.00 1.60 3.20 58.90 0.00 40.00 0.30 0.10 0.00 0.60 NA 0.00

TIAM 120 112 65 9.80 2.80 3.30 28.60 0.00 11.90 8.60 0.00 11.80 32.80 6.30 NA

NA, not applicable.
aNumbers are weighted averages of all portfolios (e.g., dots) in Figure 2. The weight of each portfolio is defined by the robustness level.
bThis column first calculates the difference in cumulative 2021–2030 emissions of each region onmodel in the current policies baseline29 with emissions in the latest 2030 NDC submissions, and then

divides the recovery package abatement by this emissions gap. Assumed NDC targets (applied to CO2 only) are �55% w.r.t. 1990 in the EU, �65% emissions intensity w.r.t. 2005 in China, �51%

w.r.t. 2005 in the United States,�45%emissions intensity w.r.t. 2005 in India,�46%w.r.t. 2013 in Japan, and�42.5%w.r.t. 2005 in Canada. NA results appear formodel-region combinations where

the current policy baseline already achieves the latest NDC target.
cFor these columns, first the number of new unemployed in 2021 relative to 2019 is calculated by multiplying the unemployment rate by total labor force4,43; we focus on unemployment in 2021

instead of 2020 to filter out large temporal unemployment driven by hard lockdowns during 2020). Then it divides the amount of recovery package job-years in the energy sector by 10 (2021–

2030) and 5 (2021–2025) and divides it by the total amount of new unemployed.
dFor the GEMINI-E3 model, the subsidy budget for solar PV and CSP is combined.
eFor the GEMINI-E3 model, the subsidy budget for onshore and offshore wind is combined.
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Figure 3. Technology mix of portfolios maxi-

mizing each objective per model-country

combination

For each objective independently, we isolated the

top 5% of portfolios that maximize that objective.

We then used the robustness of each portfolio as a

weight and calculated the weighted average of their

investment mixes (in the top 5%), to create an ideal

portfolio that represents the best-performing solu-

tion for each distinct objective.
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many model-specific factors that affect the effectiveness of

technology finance, and which are hidden in a ‘‘black box’’ be-

tween the presented inputs (budgets) and outputs (emissions,

jobs). By disentangling this causality into three ratios (Figure 1)

for each model-country-technology combination, the influence

of model behavior on outcomes is exposed.

The first ratio measures how much additional capacity (in

nominal value) is installed for each dollar in support, which

can be seen as a support ‘‘amplifier’’ (Figure S2 in SI-1). For

nearly all technologies and countries, GCAM-PR and TIAM-

Grantham see decreasing returns for each additional dollar of

support. This is because the logit technology choice mecha-

nism in GCAM-PR53 causes gradually decreasing returns,

with the first dollar of support for a certain technology stimu-

lating more capacity deployment than subsequent support to

the same technology. In comparison, the technology-rich,

winner-takes-all optimization mechanism in TIAM-Grantham

implies that the cheapest technology can dominate all new

deployment. This mechanism amplifies the returns to scale

curve as, once the subsidy achieves cost-competitiveness for

a specific low-carbon technology, then this results in a large de-

gree of deployment (much more than GCAM-PR), with further

subsidies having less additional impact. This effect explains

why, in TIAM-Grantham, more technologies receive at least

some minimal support, as the first dollars of support in each

technology are relatively more effective. In contrast, the rela-

tively flat curves observed for GCAM-PR cause those technol-

ogies that are not too competitive—due to either or a mix of

technology costs, climatic conditions, and/or market saturation

(e.g., solar PV in the EU)—not to receive any support at all. The

results for GEMINI-E3, in comparison, show increasing returns

to scale for support in some technologies (PV in the EU, China,

and the United State, biomass in China and the United States).

As the model tries to reach equilibrium over time, the benefits of

temporary financial support in one period will be largely re-

verted in subsequent periods, inducing an implicit penalty to-

ward earlier support. Meanwhile, the model intents to optimize

the timing of financial support over time. With higher budgets

dedicated to a specific technology, a relatively higher share of

that budget is going to allocated at the later support years (com-
One Ea
ing online post 2025). Spreading out finan-

cial support over time increases the cu-

mulative technology uptake until 2030

with more support for those technologies.

These increasing returns to scale explain

why GEMINI-E3 finds it is optimal to invest

nearly all the budget in one (best-perform-
ing) technology (Figure 3), avoiding trade-offs between different

objectives when selecting technology portfolios (Figure 2).’’

The other two ratios measure the emissions and employment

impact of each additional unit of technology capacity (Figures S3

and S4 in SI-1, respectively). As such, they summarize the en-

ergy system interactions caused by an additional unit of clean

energy capacity in each model, and the combined set of emis-

sions and employment factors of the energy system response.

These ratios tend to be technology and country specific and, in

contrast to the support-to-capacity ratio, can be both positive

and negative. For instance, a new support-driven wind park

that is competing with both clean and fossil energy alternatives

may replace more labor-intensive alternatives and may increase

the demand for energy as a whole through a rebound effect

induced by lower electricity prices. Figure S3 (in SI-1) shows

much stronger emissions reductions per unit of support-driven

capacity unit for TIAM-Grantham, which can be explained by

the energy system impact of the additional capacity: additional

capacity affects mainly the dispatch of other existing capacity

in themodel, whichmeans that renewables with nearly zero mar-

ginal costs reduce the running hours of predominantly thermal

power plants fueled by coal and gas. In contrast, GCAM-PR

andGEMINI-E3 have constant capacity factors for each technol-

ogy throughout the model simulations. This means new support-

driven capacity of one renewable technology either substitutes

capacity additions for all other technologies (including renew-

ables) or increases capacity additions for all other technologies

(including fossil fuel technologies) if the financial support sub-

stantially drives down energy prices (the latter occurs in

GCAM-PR only). In jobs, differences are less pronounced, and

the major reason why GEMINI-E3 stands out is the dominance

of PV in the portfolios, which is among the most labor-intensive

technologies per unit of support (see Figure S4 in SI-1).

Another important difference among the models is that TIAM-

Grantham applies inter-temporal optimization with perfect fore-

sight toward future modeling periods, whereas GCAM-PR and

GEMINI-E3 are recursive-dynamic models, which means that

each modeling period solves independently without knowledge

on future costs and policies. Given that the modeled recovery

packages affect two modeling periods (2025 and 2030, the latter
rth 5, 1042–1054, September 16, 2022 1047
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due to construction times; see Scenario protocol in Experimental

procedures), this limited foresight may cause somewhat unex-

pected model behavior driven by temporal dynamics, such as

the increasing returns to scale in GEMINI-E3 explained earlier

in this section, as well as trade-offs between short- and long-

term employment in GCAM-PR: in the case of technologies

that are already very competitive—often due to a combination

of low technology costs, good conditions, and pre-existing pol-

icies supporting their deployment (onshore wind in the EU, solar

PV in China and Japan)—additional financial support from recov-

ery packages has such a large impact on capacity that it signif-

icantly drives down the electricity price, affecting the whole en-

ergy system. However, in the next period, less of that

competitive technology will be supported by the recovery pack-

ages. This causes the electricity price to rebound, negatively

affecting employment in the entire sector due to overcapacity,

and hence creating a trade-off between short-term and long-

term employment.

Despite potential real-world temporal uncertainties for inves-

tors regarding announced recovery packages, overall, the per-

fect foresight principle in TIAM-Grantham is likely more

adequate for modeling the impact of pre-announced financial

support packages over time.54 Apart from the inter-temporal

optimization function, the electricity dispatch model with flexible

capacity factors in TIAM-Grantham also reflects better how sup-

ported intermittent technologies compete with existing technol-

ogies in the market. However, the winner-takes-all mechanism

for technology choice, which causes very high technology up-

take with minor financial support, can be deemed less realistic

in a real-world setting, and the more gradual technology substi-

tution in GCAM-PR and GEMINI-E3 reflects the support-driven

uptake of low-carbon technologies better from a real-world

perspective. These heterogeneous strengths and weaknesses

of each model highlight the importance of diverse model ensem-

bles, like the one employed here, in shedding light on various ef-

fects of policy and providing a robust assessment within a spec-

trum of uncertainty inherent in model theory and dynamics.55

DISCUSSION

This study examines how to distribute the publicly announced

green COVID-19 recovery packages in six large economies to

optimize emissions abatement and employment creation and

demonstrates the progress that such packages can help make

toward each of the objectives. While for some economies (EU

and China) such packages provide good progress toward either

or both objectives under our assumptions, for other economies

(the United States, India, Japan, and Canada) the potential

impact is less profound.

In terms of emissions, progress in emissions abatement falls

short of 2�C-compatible pathways, contradicting effective green

recovery IAM scenarios published before the extent of green re-

covery packages was announced.10,26,56 However, the main

reason for that is the green share in total recovery funds being

much smaller than assumed in those studies; at the same time,

our analysis only focused on the power and biofuel sectors.

Another important difference between this study and earlier IAM

studies is that we projected the impact of recovery funds on top

of an existing current policy trajectory. In contrast, earlier studies
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defined the investment gap by looking at differences in low-car-

bon investments between pre-existing reference and Paris-

compliant scenarios, without taking interactions between existing

policies and public incentives into account.10,57 Our results, and

especially the large differences obtained across the three models

applied in this analysis, imply that focusing on required low-car-

bon investments is an oversimplified technique of measuring

whether packages are in line with mitigation goals, due to the

large uncertainty in the extent to which green investments could

achieve emission cuts.58 We show and clarify how structural dif-

ferences in the way different models operate (e.g., economic the-

ories, foundations, principles), and, in turn, the interacting effect of

existing emission reduction policies, can yield vast differences in

the measured impact of green investments on mitigated emis-

sions. Since none of the models can be objectively classified as

better orworse for these types of analyses,model diversity should

be seen as an important prerequisite to capturing the entire solu-

tion space of a specified research question, while a lack of such

diversity may give a false sense of precision.

In terms of employment, the structure of the impact in most

countries is more focused on short-term employment gains

relative to other studies (e.g., Pollitt et al.26), while the absolute

impact is hard to compare due to strong differences in

assumed recovery package sizes. A caveat in the employed

modeling approach is the use of employment factors to esti-

mate net energy-sector jobs, following various recent litera-

ture,17–19 an approach potentially disregarding wage dynamics

and longer-run impacts, assuming perfect labor mobility across

different sectors and skillsets without considering additional in-

vestment in retraining or reskilling and change in job multiplier

in the long run due to change in labor productivity59 and auto-

mation.60 Also, renewables-driven net job gains in the energy

sector can be offset by job losses in other sectors if gross do-

mestic product (GDP) is negatively affected.61 Logically, in a

full-employment economy model that does not consider volun-

tary and involuntary unemployment, net job gains in one sector

need to be drawn from other sectors, but full employment is not

a very realistic assumption for both developed as well as devel-

oping countries. Nevertheless, we opted to use employment

factors as we analyze economic recovery packages, of which

the explicit purpose is to create employment in a non-full-

employment market. Besides, not all three models can obtain

labor market results, rendering employment factors the most

straightforward way to harmonize the job creation estimate

across all modeling results. A final caveat is on the choice of

the objective function. We focused on quantitative employment

numbers, while not taking into account qualitative employment

aspects such as wages. Given that the pledged recovery funds

are driven by the economic downturn as a result of the COVID-

19 pandemic, we assumed that employment quantities are

more relevant than quality to policymakers in the light of eco-

nomic crisis recovery, but we do fully acknowledge that pol-

icy-maker objectives are heterogeneous and might differ from

the ones we have used.

This study suggests that, when optimally allocating recovery

funds between emission reduction and employment creation ob-

jectives, most countries would invest over 50% of their energy-

focused green recovery packages in financing PV, over 10% in

onshore wind, while investments in other clean energy
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technologies strongly depend on the country, preferred objec-

tive, and model applied. However, a mix of supply problems

and quickly recovered demand (in part due to post-COVID stim-

ulus measures) has caused a strong increase in prices for many

materials over the course of 2021,62,63 affecting costs of PV and

wind projects throughout the world by 16%–70% and 10%–

25%, respectively.64 This inflationary impact of recovery policies

is not taken into account in this analysis and the lack of material

and supply-chain representation is a weakness in many IAMs

that are used in these types of analyses.65

Overall, this study shows that green economic stimulus, if stra-

tegically spent, has the potential to both achieve emission reduc-

tions and increase employment, in line with recent publications

on this topic18,19 as well as empirical evidence in the EU.13 Of

the 16 region-model combinations in this study, only one (Japan

with TIAM-Grantham) suggested that most optimal green portfo-

lios imply a decrease in employment. Nevertheless, the outputs

also show that, despite the double benefits of green recovery

packages, many countries have not managed to pursue signifi-

cant green recovery packages, despite the astronomical size

of total economic recovery spendings announced during the

COVID-19 pandemic.10 Since an important requisite for green

stimulus packages to have a beneficial rather than an inflationary

impact is that the economy is in an economic downturn with rela-

tively high unemployment, political preparedness to rapidly pur-

sue well-balanced green stimulus packages in times of eco-

nomic crisis is crucial, utilizing such crises to achieve the green

transformations required for reducing emissions.66 For example,

the relatively high impact of the EU’s recovery packages

compared with those of, e.g., the United States may hint at rela-

tively high political preparedness in the EU to put the energy tran-

sition as a high priority when designing policy to combat reces-

sion and unemployment. Our results also show that the optimal

technological breakdown of recovery packages differ signifi-

cantly by country and, critically, by objective. Different technolo-

gies should be prioritized depending on whether the main focus

of the policy is on emission reductions or employment goals.

While employment creation is often high on the political agenda

in crisis times, it is important for policymakers to carefully weigh

the importance and impact of both objectives (as well as other

ones not considered in this study) and ensure that the impact

of recovery packages is beneficial for both objectives rather

than inflationary. The use of modeling tools that are well cali-

brated for the focus region can be instrumental in weighting

out the most robust response to future crises.67

EXPERIMENTAL PROCEDURES
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Materials availability
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Data and code availability

All data presented in this paper are available in this paper’s supplemental in-

formation has and have been deposited and are publicly available at Zenodo:

https://doi.org/10.5281/zenodo.6998390. Any additional information required

to reanalyze the data reported in this paper is available from the lead contact

upon request.
Model ensemble

GCAM-PR and TIAM-Grantham are partial equilibrium models that achieve

equilibrium between supply and demand for energy in each sector repre-

sented, accounting for changes in energy prices that result from changes in

fuels and technologies used to satisfy energy service demands in these sec-

tors. GCAM-PR operates on a recursive-dynamic cost-optimization basis,

which means that it solves for the least-cost energy system in a given period,

before moving to the next time period and performing the same exercise.

TIAM-Grantham, on the other hand, operates on a perfect-foresight welfare

cost-optimization basis, whereby all consequences of technology deploy-

ments, fuel extraction, and energy price changes over the entire time horizon

are considered when minimizing the cost of the energy system, so as to pro-

vide energy service demands within specified emissions constraints.

GEMINI-E3 is a computable general equilibrium (CGE) model with a more

detailed, multiple-sector representation of the economy that considers how

the impacts of specific policies spread across economic sectors and regions

and how they affect environmental parameters. The model’s operation is

similar to that of GCAM-PR and TIAM-Grantham but differs in thatmarket equi-

librium is assumed to take place simultaneously in each market/region. It fea-

tures richer representation of the economy, which, however, requires calibra-

tion to data on national and international socio-accounting information, as well

as input in the form of a series of elasticities of substitution.

An overview of the three models with their study-relevant features and tech-

nology coverage is displayed in Table 2. More information on the threemodels,

including a detailed summary and their economic rationale, is provided in

Notes S1–S3, as well as in the I2AM PARIS platform (https://www.i2am-

paris.eu).

Scenario protocol

Before running the numerous subsidy scenarios for different technologies, a

baseline was defined with which each subsidy scenario is compared to quan-

tify the impact of subsidies. This baseline scenario ought to represent where

the region is headed given its climate policies in place, before COVID-19 re-

covery packages were announced. Hence, the current policies scenario was

selected from Sognnaes et al.,32 which for the EU is further detailed in Nikas

et al.,68 from which each model used its own trajectory, with an important

amendment for the purposes of this study: to avoid the competition between

existing current policies and the new technology subsidies (e.g., in the form of

subsidies lowering the costs of achieving current policies), which could poten-

tially alter the trajectories defined by policies already in place, the complete set

of current policies was fixed, so that the newly modeled energy policies can

come on top of what is already achieved with current policies. Fixing these cur-

rent policies depended on each model. For example, based on the outcomes

of the current-policies scenario, the implicit subsidy (e.g., the feed-in tariff

required to achieve a certain renewable energy systems (RES) share) or tax

(e.g., the EU Emissions Trading System [ETS] price) may be read in, and

applied as, fixed subsidies and taxes in a new baseline, so that the outcome

is precisely equal to the current-policies scenario, but such implicit subsidies

(e.g., feed-in tariffs) and taxes (e.g., EU ETS) would be no more dependent on

changes in the costs of energy technologies until 2030. These amendments

would only be necessary for the policies applied in the regions of this study

(Canada, China, EU, India, Japan, and the United States). Canada and Japan

were not modeled in GEMINI-E3 since these countries were not independently

represented in the model.

On top of these current policies, subsidy scenarios are run individually for

each technology andmodel region. First, a ‘‘max-subsidy’’ level is determined,

in which the full budget of each country is spent on a given technology, and

subsequently 50 runs are performed with gradual levels of subsidization

(2%, 4% ., 100% of the max-subsidy value) for that technology only. On

several occasions, the 100% run may not spend the entire budget; e.g., if a

certain technology is not taken up sufficiently even if it were fully subsidized

(due to, for example, high non-capital costs). If a certain technology contained

more sub-technologies (e.g., utility-scale PV and rooftop PV), as was the case

in GCAM-PR and TIAM-Grantham, the subsidy levels were calculated using

the sub-technology with the lowest costs, and the same absolute subsidy

value was then applied to all sub-technologies.

Considering the construction time of different technologies, we also

acknowledge that there should realistically be a delay from the point projects
One Earth 5, 1042–1054, September 16, 2022 1049
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Table 2. Model key characteristics

Model

Model

type

Temporal

solution

dynamic

Technology

choice

mechanism

Technology

dispatch

Technology representationb

Solar

PV

Solar

CSP

Onshore

wind

Offshore

wind

Geo

thermal Nuclear Biomass

Hydro

power

Bio

fuels

TIAM-

Grantham

partial

equilibrium

inter-temporal

optimization

winner

takes

it all

flexible

capacity

factors

U U U U U U U U

GCAM-

PR

partial

equilibrium

recursive

dynamic

logit

choice

constant

capacity

factors

U U U U U U U U

GEMINI-

E3

computable

general

equilibrium

recursive

dynamic

nested

CESa

function

constant

capacity

factors

Uc Uc Ud Ud U

aCES, constant elasticity of substitution.
bNon-represented technologies may imply that the technology supply is fully or partially pre-determined and not subject to market dynamics, hence

irrelevant in the current study design. Solar

and wind technologies in GEMINI-E3 are represented under single technologies with (weighted) average costs.
cRepresented as solar energy technology combining PV and CSP.
dRepresented as wind power combining onshore and offshore wind.
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are given a green light until they are connected to the grid. This implies that,

even if all subsidies are to be spent in the 2021–2025 period, theymay not enter

the energy mix until the next period (2026–2030). Based on this construction

delay, Table 3 shows for each technology the approximate pre-calculated

shares of the subsidized output that would come online in either the 2021–

2025 period or the 2026–2030 period (due to construction delay).

Budget selection

For the EU, the Recovery and Resilience Facility (RRF) is the largest compo-

nent of the NextGenerationEU program, the bloc’s landmark recovery instru-

ment. The RRF is intended to provide up to EUR 312.5 billion and EUR 360

billion in grants and loans, respectively. Considering (1) the EUR 75 billion of

the RRF’s green pillar, which is expected to be channeled into clean energy

projects on the selected technologies, excluding related infrastructure invest-

ments (e.g., storage),69 and adding to that (2) EUR 5 billion from the UK fiscal

plan,70 a maximum budget of EUR 80 billion (USD 96 billion) was selected.

China announced a significant recovery package of around USD 740 billion,

around USD 200 billion of which is in the form of quotas for special bonds is-

sued by local governments for infrastructure. Currently, the lack of central gov-

ernment guidelines on the types of projects that should be prioritized for in-

vestment may lead to the budget flowing toward conventional energy

projects.71 Here, we assumed that about 30% of this budget for infrastructure

can be used for projects related to the technologies of interest to our study (i.e.,

a level of ambition similar to the EU’s) and assessed what would be the best

allocation if a budget of USD 60 billion was used for green investments.

In the United States, of the three fiscal plans for recovery, only the second

package accommodates a dedicated budget (USD 26 billion) for investments

related to the technologies analyzed here,72 and this is the budget used in this

research. This, however, does not include recent pledges by the Biden Admin-

istration, which are still under formulation and are thus omitted from the

analysis.

In India, of the nearly USD 400 billion package announced, only USD 9 billion

is allocated toward energy.73 Although most of this is expected to head to the

coal sector, we used this budget to carry out a what-if analysis, exploring how

to optimally allocate it to support green energy.

Finally, from the packages announced in the context of their economic re-

covery from COVID-19, Canada and Japan have pledged that USD 17.6

billion74 and USD 19.2 billion75 will be dedicated to support the green transi-

tion, as part of their broader roadmaps to net-zero. In the case of Japan,

and considering the vague nature of the pledges, an amount of USD 6 billion

was used, following a similar level of ambition as with the EU (and a similar

assumption as with the budget for China; around 30% of the announced pack-

age toward the technologies of interest for this study). For Canada, drawing

from the Healthy Environment and a Healthy Economy plan,76 which is part
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of the total announced budget, and which implicitly ties funds oriented toward

green projects in the short term with the COVID-19 recovery, an amount of

USD 3 billion was selected based on the share allocated for low-carbon power

generation.

Employment factors

The level of employment is presented as a net-difference compared with the

current policy scenario, as net employment is deemed more constructive in

terms of job variations brought about by a transition.33

The two partial equilibrium IAMs used in this study (GCAM-PR and TIAM-

Grantham) lack internal processes to account for employment, while the

GEMINI-E3 CGE model only provides aggregated results due to limited gran-

ularity in terms of sectoral and fuel representation.36 For this reason, we use

employment factors to estimate the job impact of each subsidy level for the

selected technologies, on top of the baseline trajectory projecting where the

region is headed given its current climate policies.

To assess employment in each scenario, the contribution of each fuel to the

energy mix is considered. Total employment of the energy sector is estimated

based on the aggregation of employment factors in construction, manufacturing

(driven by power-sector capacity additions), operation andmaintenance (driven

by total power-sector capacity), extraction (driven by fossil fuel, uranium, and

bioenergy production), and refinery (driven by refined liquids production).

For each fuel, job category, and country, datasets labeled Data S1–S4,

which can be found at https://doi.org/10.5281/zenodo.6998390, include the

employment factors used to calculate the final employment level. These

were collected from, or based on, the literature as follows:

d For RES technologies and biofuels, employment factors were drawn

from Rutovitz et al.,41 a comprehensive database commonly employed

in relevant modeling analyses (e.g., Fragkos and Paroussos,35 Ram

et al.17).

d For fossil fuels, the values were drawn from Pai et al.,19 building on Ru-

tovitz et al.41 but including regional disaggregation of fossil fuel factors.

d Although the time horizon of the analysis is limited to 2030, causing the

impact of changes in the factors to be small, to account for the impact of

technological learning curves on employment, employment factors are

assumed to decline proportionally with cost projections for each tech-

nology.17 Technology costs (e.g., CAPEX, OPEX) are harmonized

across the three models following the harmonization protocol estab-

lished in Giarola et al.52

Since each of the country analyses in this study is independent, employment

factors for manufacturing and extraction have been corrected for the share of

domestic supply. For simplicity, we ignored re-exports of goods, as well as the

https://doi.org/10.5281/zenodo.6998390


Table 3. Technologies to be included in subsidy runs, if covered by model, and timing of projects coming online if all subsidies were

spent in projects, for which construction starts in 2021–2025

Technology Sector

Share (%) of projects coming online in

Subsidization in models:2021–2025 2026–2030

Biomass electricity generation 60 40 GCAM, TIAM, GEMINI-E3

Hydro electricity generation 0 100 TIAM

Nuclear electricity generation 0 100 GCAM, TIAM

Solar PV electricity generation 80 20 GCAM, TIAM, GEMINI-E3

Solar CSP electricity generation 60 40 GCAM, TIAM

Geothermal electricity generation 60 40 GCAM, TIAM

Wind onshore electricity generation 60 40 GCAM, TIAM, GEMINI-E3

Wind offshore electricity generation 20 80 GCAM, TIAM

Biofuels refining capacity 60 40 GCAM
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geographical distribution of specific components for each technology. There-

fore, employment factors are multiplied by the relative share of domestic sup-

ply in domestic demand for the last year, in which real-world data could be

found (2018 or 2019), and cannot exceed one. In other words, if a country is

a net exporter of manufactured supplies or fuels, all additional manufacturing

or extraction jobs are assumed to occur in the country itself; while, if a country

imported, e.g., 50% of domestic demand in 2018, only half of the newly

created manufacturing or extraction jobs would occur in the country itself.

These multipliers to correct for international trade of fuels and manufacturing

products can be found at https://doi.org/10.5281/zenodo.6998390, labeled

Data S1–S4.

Portfolio analysis

IAM results feed into amulti-objective optimization model, with a view to maxi-

mizing the returns of the assumed green part of COVID-19 recovery fiscal pro-

grams, expected to be allocated toward the 10 technologies considered (Ta-

ble 2), in terms of new employment created in the energy sector and of further

CO2 emissions cuts. Contrary to performing a standalone cost-optimal anal-

ysis based on themodeling outputs, this integration of the IAMswith a portfolio

analysis model allows us to consider additional objectives (e.g., employment),

which are typically outside the capabilities and cost-optimization solution

scope of IAMs (including this study’s modeling ensemble).

We define three different objective functions. The first objective revolves

around further reducing CO2 emissions; we use 2030 as a time horizon for

this objective, considering that 2030 is a milestone year in NDCs. The second

objective lies in creating new energy-sector jobs; assuming policymakers seek

to maximize immediate returns on recovery funds spent in the next 5 years, we

use 2025 as a time horizon for this objective. However, aside from differences

across the six regions given their domestic resources and manufacturing ca-

pacity, different projects imply different allocations of new jobs along the proj-

ect pipelines; a key question, therefore, is whether new jobs created in the near

term (2025) by subsidies in the considered technologies can be sustained in

the longer run. As a result, we also define a third objective, which ismaximizing

new employment gains by the end of the decade. In the optimization problem,

the input of the three objectives is considered as a net difference between each

scenario (subsidization on one technology) and the baseline. Based on the

modeling results, each subsidy level on each technology independently corre-

sponds to a specific impact across the three objectives, formulating the payoff

tables to facilitate the functional relationship that links the objectives with the

amount of subsidy spent.

In summary, the portfolio analysis process seeks to optimize emissions cuts

by 2030, employment gains by 2025, and employment gains by 2030 simulta-

neously. This can be summarized in Equations (1) and (2):

max ½E2021� 2030ðMtCO2Þ; J2021� 2025ðjob yearsÞ; J2021� 2030ðjob yearsÞ�
(Equation 1)

subject to
X

i

xi < Region Budget ðUSDÞ (Equation 2)
where:

d E2021�2030: cumulative CO2 emission reductions from 2021 to 2030

d J2021� 2025: cumulative job-years in the period 2021–2025

d J2021� 2030 : cumulative job-years in the period 2021–2030

d Region Budget: the available budget of each region

d xi: the decision variable of the optimization problem, representing the

amount of subsidy spent on technology i (i is based on the technology

subsidization capabilities of each model; see Table 2).

The optimization process is based on an open-source (Python) implementa-

tion of the AUGMECON-R algorithm,77 which is based on the ε-constraint fam-

ily of optimization methods, with the addition of a lexicographic optimization

approach (nested objectives) in the augmented (AUGMECON) versions. Our

algorithm is further improved to optimally allocate the objective functions

within the nested loops of the algorithm toward capturing all solutions, thereby

considerably reducing execution time. Following this approach, the algorithm

is not required to weigh the objectives (e.g., weighting method), thereby avoid-

ing the need to scale the objectives and consequently bypassing a common

criticism that scaling can have a strong influence on the results.78 As such,

because of the lexicographic solution mechanism, any identified trade-off

among different objectives derives directly from the payoff tables and the so-

lution and is not an arbitrary choice made by the modeler (i.e., via scaling). The

goal of the employed optimization algorithm is to identify all non-dominated

solutions (investment mixes across technologies); these comprise the solu-

tions, for which there exist no alternative solution performing better across

all objectives (i.e., solutions, for which the performance along no objective

can be improved without reducing the efficiency along the other objectives).

These solutions are termed Pareto-optimal solutions; it should be noted that

Pareto optimality is always problem specific.

Finally, to increase confidence in the resulting optimal technological subsid-

ization portfolios, we assume that the outputs of IAMs (CO2 emissions cuts as

well as both near-term and long-term employment gains per subsidy level of

each technology for each region) feature uncertainty. We employ 100 Monte

Carlo simulations for each portfolio optimization problem, carried out in

a ±5% range following a normal distribution (with a mean value the model re-

sults and a ±5% SD), in an approach similar to Forouli et al.40 Considering the

complexity of the optimization problems (three objectives, numerous subsidy

levels, across three models and six countries), it was computationally exhaus-

tive to increase the number of iterations, without providing considerable im-

provements on the accuracy of the results. In particular, the number of itera-

tions was set to 100 after gradually reducing the number of iterations from

an initial level of 1,000 iterations and observing whether it produced significant

differences with the 1,000-iteration-run. Until the level of 100 iterations, differ-

ences were found to be negligible, hence we continued with this number to

optimize between outcome robustness and computing time.

We define robustness as the number of times a subsidization portfolio is

found optimal (i.e., as part of the Pareto frontier) among the 100 Monte Carlo

simulations. In other words, if a specific budget allocation is found optimal in

n simulations (based on the Pareto optimality previously discussed), then the
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robustness of this portfolio is n%. Following this definition, higher robustness

indicates that a portfolio is non-dominated (or Pareto-optimal) across a larger

number of iterations. In the figures, robustness is reflected in the size of each

point (portfolio): the larger the point of a portfolio, the higher its robustness (see

legend in Figures). The robustness level of each portfolio is used as a weight to

aggregate all portfolios into one representative portfolio (e.g., Table 1) for each

case (model-country combination). This way, from the entire Pareto frontiers

(which entail thousands of different portfolios), theseweighted-average portfo-

lios can provide quick insights into the direction policymakers need to take, as

well as an anticipated average performance across all objectives. Contrary to

employing an average of the portfolios, using aweighted average based on the

robustness of each portfolio ensures that outliers (i.e., portfolios appearing in a

very small number of iterations and therefore less representative of optimality)

play a smaller role in this process.
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