100 research outputs found

    Facilitating joint attention with salient pointing in interactions involving children with autism spectrum disorder

    Get PDF
    Children with autism spectrum disorder (ASD) reportedly have difficulties in responding to bids for joint attention, notably in following pointing gestures. Previous studies have predominantly built on structured observation measures and predefined coding categories to measure children’s responsiveness to gestures. However, how these gestures are designed and what detailed interactional work they can accomplish have received less attention. In this paper, we use a multimodal approach to conversation analysis (CA) to investigate how educators design their use of pointing in interactions involving school-aged children with ASD or autistic features. The analysis shows that pointing had specific sequential implications for the children beyond mere attention sharing. Occasionally, the co-occurring talk and pointing led to ambiguities when a child was interpreting their interactional connotations, specifically when the pointing gesture lacked salience. The study demonstrates that the CA approach can increase understanding of how to facilitate the establishment of joint attention

    Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations

    Get PDF
    Unstructured grid ocean models are advantageous for simulating the coastal ocean and river–estuary–plume systems. However, unstructured grid models tend to be diffusive and/or computationally expensive, which limits their applicability to real-life problems. In this paper, we describe a novel discontinuous Galerkin (DG) finite element discretization for the hydrostatic equations. The formulation is fully conservative and second-order accurate in space and time. Monotonicity of the advection scheme is ensured by using a strong stability-preserving time integration method and slope limiters. Compared to previous DG models, advantages include a more accurate mode splitting method, revised viscosity formulation, and new second-order time integration scheme. We demonstrate that the model is capable of simulating baroclinic flows in the eddying regime with a suite of test cases. Numerical dissipation is well-controlled, being comparable or lower than in existing state-of-the-art structured grid models.</p

    Distributed Model-to-Model Transformation with ATL on MapReduce

    Get PDF
    International audienceEfficient processing of very large models is a key requirement for the adoption of Model-Driven Engineering (MDE) in some industrial contexts. One of the central operations in MDE is rule-based model transformation (MT). It is used to specify manipulation operations over structured data coming in the form of model graphs. However, being based on com-putationally expensive operations like subgraph isomorphism, MT tools are facing issues on both memory occupancy and execution time while dealing with the increasing model size and complexity. One way to overcome these issues is to exploit the wide availability of distributed clusters in the Cloud for the distributed execution of MT. In this paper, we propose an approach to automatically distribute the execution of model transformations written in a popular MT language, ATL, on top of a well-known distributed programming model, MapReduce. We show how the execution semantics of ATL can be aligned with the MapReduce computation model. We describe the extensions to the ATL transformation engine to enable distribution, and we experimentally demonstrate the scalability of this solution in a reverse-engineering scenario

    Does catchment geodiversity foster stream biodiversity?

    Get PDF
    Context One approach to maintain the resilience of biotic communities is to protect the variability of abiotic characteristics of Earth's surface, i.e. geodiversity. In terrestrial environments, the relationship between geodiversity and biodiversity is well recognized. In streams, the abiotic properties of upstream catchments influence stream communities, but the relationships between catchment geodiversity and aquatic biodiversity have not been previously tested. Objectives The aim was to compare the effects of local environmental and catchment variables on stream biodiversity. We specifically explored the usefulness of catchment geodiversity in explaining the species richness on stream macroinvertebrate, diatom and bacterial communities. Methods We used 3 geodiversity variables, 2 land use variables and 4 local habitat variables to examine species richness variation across 88 stream sites in western Finland. We used boosted regression trees to explore the effects of geodiversity and other variables on biodiversity. Results We detected a clear effect of catchment geodiversity on species richness, although the traditional local habitat and land use variables were the strongest predictors. Especially soil-type richness appeared as an important factor for species richness. While variables related to stream size were the most important for macroinvertebrate richness and partly for bacterial richness, the importance of water chemistry and land use for diatom richness was notable. Conclusions In addition to traditional environmental variables, geodiversity may affect species richness variation in streams, for example through changes in water chemistry. Geodiversity information could be used as a proxy for predicting stream species richness and offers a supplementary tool for conservation efforts.peerReviewe

    Plume spreading test case for coastal ocean models

    Get PDF
    We present a test case of river plume spreading to evaluate numerical methods used in coastal ocean modeling. It includes an estuary–shelf system whose dynamics combine nonlinear flow regimes with sharp frontal boundaries and linear regimes with cross-shore geostrophic balance. This system is highly sensitive to physical or numerical dissipation and mixing. The main characteristics of the plume dynamics are predicted analytically but are difficult to reproduce numerically because of numerical mixing present in the models. Our test case reveals the level of numerical mixing as well as the ability of models to reproduce nonlinear processes and frontal zone dynamics. We document numerical solutions for the Thetis and FESOM-C models on an unstructured triangular mesh, as well as ones for the GETM and FESOM-C models on a quadrilateral mesh. We propose an analysis of simulated plume spreading which may be useful in more general studies of plume dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of model discretization or computational grid than it does on the type of advection scheme.</p

    Nosturimastojen väsymislujuuden arviointi murtumismekaniikan avulla

    No full text

    A baroclinic discontinuous Galerkin finite element model for coastal flows

    No full text
    Numerical modelling of coastal flows is a challenging topic due to complex topography of the coastal zone, rapid flow dynamics and large density variations. Such phenomena are best simulated with unstructured grid models due to their highly flexible spatial discretisation. This article presents a three-dimensional discontinuous Galerkin finite element marine model. Discontinuous Galerkin spatial discretisation is combined with an explicit mode splitting time integration scheme. Slope limiters are introduced to guarantee high quality of the tracer fields in the presence of strong gradients. Free surface movement is accounted for by means of an Arbitrary Lagrangian Eulerian (ALE) moving mesh method. Water volume and tracers are conserved. The conservation properties and baroclinic adjustment under gravity are tested with numerical benchmarks. Finally, the model is applied to the Rhine river plume in an idealised setting
    • …
    corecore