441 research outputs found

    State-resolved studies of CO2 sticking to CO2 ice

    Get PDF
    Internal vibrations may affect the adsorption, scattering, and reactions of molecules impinging onto a surface. The energy of the ν3 antisymmetric stretch vibration of CO2 slightly exceeds the desorption energy of CO2 bound to CO2 ice. We use supersonic molecular beam techniques and rovibrationally state-resolved excitation to determine whether this vibration affects condensation of gas phase CO2 to its ice. We detect sticking and CO2 ice formation using RAIRS and quantify the sticking probability using the King and Wells method with modulation of the vibrational excitation and Fourier transform based detection. We find that the influence of this vibration on the structure of the formed ice and on the sticking probability is negligible under our conditions. Based on our detection limit, we quantify the weighted average sticking probability at approximately 0.9 and the difference between the state-resolved and weighted average sticking probability as below 0.5%

    The CSI multimedia architecture

    Full text link

    Bond breaking in vibrationally excited methane on transition metal catalysts

    Get PDF
    The role of vibrational excitation of a single mode in the scattering of methane is studied by wave packet simulations of oriented CH4 and CD4 molecules from a flat surface. All nine internal vibrations are included. In the translational energy range from 32 up to 128 kJ/mol we find that initial vibrational excitations enhance the transfer of translational energy towards vibrational energy and increase the accessibility of the entrance channel for dissociation. Our simulations predict that initial vibrational excitations of the asymmetrical stretch (nu_3) and especially the symmetrical stretch (nu_1) modes will give the highest enhancement of the dissociation probability of methane.Comment: 4 pages REVTeX, 2 figures (eps), to be published in Phys. Rev. B. (See also arXiv:physics.chem-ph/0003031). Journal version at http://publish.aps.org/abstract/PRB/v61/p1565

    Double-Stranded Water on Stepped Platinum Surfaces

    Get PDF
    The interaction of platinum with water plays a key role in (electro)catalysis. Herein, we describe a combined theoretical and experimental study that resolves the preferred adsorption structure of water wetting the Pt(111)-step type with adjacent (111) terraces. Double stranded lines wet the step edge forming water tetragons with dissimilar hydrogen bonds within and between the lines. Our results qualitatively explain experimental observations of water desorption and impact our thinking of solvation at the Pt electrochemical interface

    Easy and efficient agent-based simulations with the OpenABL language and compiler

    Get PDF
    Agent-based simulations represent an effective scientific tool, with numerous applications from social sciences to biology, which aims to emulate or predict complex phenomena through a set of simple rules performed by multiple agents. To simulate a large number of agents with complex models, practitioners have developed high-performance parallel implementations, often specialized for particular scenarios and target hardware. It is, however, difficult to obtain portable simulations, which achieve high performance and at the same time are easy to write and to reproduce on different hardware. This article gives a complete presentation of OpenABL, a domain-specific language and a compiler for agent-based simulations that enable users to achieve high-performance parallel and distributed agent simulations with a simple and portable programming environment. OpenABL is comprised of (1) an easy-to-program language, which relies on domain abstractions and explicitly exposes agent parallelism, synchronization and locality, (2) a source-to-source compiler, and (3) a set of pluggable compiler backends, which generate target code for multi-core CPUs, GPUs, and cloud-based systems. We evaluate OpenABL on simulations from different fields. In particular, our analysis includes predator–prey and keratinocyte, two complex simulations with multiple step functions, heterogeneous agent types, and dynamic creation and removal of agents. The results show that OpenABL-generated codes are portable to different platforms, perform similarly to manual target-specific implementations, and require significantly fewer lines of codes
    • …
    corecore