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Abstract
GPUs are capable of delivering peak performance in TFLOPs, however, peak

performance is often difficult to achieve due to several performance bottlenecks.

Memory divergence is one such performance bottleneck that makes it harder to

exploit locality, cause cache thrashing, and high miss rate, therefore, impeding GPU

performance. As data locality is crucial for performance, there have been several

efforts to exploit data locality in GPUs. However, there is a lack of quantitative

analysis of data locality, which could pave the way for optimizations. In this paper,

we quantitatively study the data locality and its limits in GPUs at different granu-

larities. We show that, in contrast to previous studies, there is a significantly higher

inter-warp locality at the L1 data cache for memory-divergent workloads. We

further show that about 50% of the cache capacity and other scarce resources such

as NoC bandwidth are wasted due to data over-fetch caused by memory divergence.

While the low spatial utilization of cache lines justifies the sectored-cache design to

only fetch those sectors of a cache line that are needed during a request, our limit

study reveals the lost spatial locality for which additional memory requests are

needed to fetch the other sectors of the same cache line. The lost spatial locality

presents opportunities for further optimizing the cache design.
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1 Introduction

GPUs have been very successful in accelerating general-purpose applications from

different domains. The advent of hardware-managed caches further accelerated the

use of GPUs for general-purpose computing. Caches reduce off-chip memory traffic

and cut down pressure on memory bandwidth by exploiting temporal and spatial

locality, however, using caches efficiently for GPUs is a difficult task because a

GPU employs a large number of threads, and GPU caches are small that lead to high

contention and thrashing. In particular, there is a class of applications known as

irregular applications that poorly utilize GPU caches. Irregular applications have

memory divergence and/or control divergence, and they span a broad range of

domains. GPUs issue concurrent memory accesses to consecutive addresses by

coalescing memory accesses of threads in a warp. However, it may not always be

possible to coalesce individual thread accesses due to scattered accesses that lead to

memory divergence.

Memory divergence is known to cause many problems, including data over-fetch

which can waste cache capacity, consume scarce resources such as miss status

holding registers (MSHRs) and memory bandwidth, thus, further making it hard to

utilize caches efficiently. As exploiting data locality is important for performance,

there have been several studies to exploit the data locality in GPUs [9, 21].

Moreover, the recent generations of GPUs have adapted the cache design to tackle

issues such as data over-fetch. For example, Maxwell, Pascal, and Volta GPU

architectures use sectored caches [9] to fetch only the sectors that are requested

instead of always fetching all sectors of a cache line. While sectored caches reduce

data over-fetch, significant opportunities to exploit locality may also be lost as full

locality information is not known at the time of a request. Moreover, there is a lack

of quantitative analysis of data locality and data reuse in GPUs that can in general

be useful for further optimizing a GPU architecture. Therefore, in this paper, we

quantitatively study the data locality and its limits in GPUs at different granularities.

We show that there is a higher locality in GPU caches than currently exploited by

sectored caches, offering opportunities for further optimizing the cache design. Our

study focuses on NVIDIA architectures, which dominate the discrete GPU market,

however, we believe the findings mostly apply to AMD architectures as well

because both of them have a similar cache hierarchy.

In summary, we make the following main contributions:

• This is the first comprehensive, quantitative, and limit study of locality in GPU

data caches for memory-divergent workloads.

• We thoroughly study temporal and spatial locality at warp and thread-block

granularities, quantifying contributions to overall locality.

• We show significantly higher inter-warp hits (46%) at the L1 cache for memory-

divergent workloads compared to the state-of-the-art [21].

• We show that for memory-divergent workloads about 50% of the cache capacity,

and other scarce resources such as NoC bandwidth, memory bandwidth are

wasted due to data over-fetch.
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• Our analysis shows that 57% of the cache lines are never re-referenced.

However, the limit study shows that actually, only 30% of the cache lines are

never re-referenced and 27% are evicted before re-reference.

• We show that the low spatial utilization justifies the sectored-cache design,

however, the limit study reveals the lost spatial locality for which additional

memory requests are needed in a sector cache and hence, showing opportunities

for further optimizing the cache design.

This paper is an extended version of our conference paper published at SAMOS

[12]. We added significant new contributions to the conference version of the paper.

Below is a brief description of the main differences.

• We added Sects. 4.2.2 and 4.2.3 to provide new results for L1/L2 data cache

spatial utilization at warp and CTA Levels. The spatial utilization limit study at

warp and CTA levels show the contribution of intra-warp and inter-warp

accesses to the spatial locality. We believe the quantitative analysis will help to

optimize the design of a sector cache. We further improved the results section

qualitatively by emphasizing the findings.

• We added Sect. 4.4 to show that the increase in cache locality will increase the

performance of memory-divergent workloads.

• We added Sect. 4.5 for potential improvements of GPU cache and warp

scheduler design.

• We revised the background section on GPU caches (Sect. 2) and provide a

thorough analysis of L1/L2 data caches over 8 generations of NVIDIA

architectures along with an overview of GPU memory hierarchy.

• We added Sect. 4.6 to summarize the quantitative analysis, which is very useful

for a quick reference to all numbers.

The paper is organized as follows. In Sect. 2, we briefly discuss background on

GPU data caches and classify locality. In Sect. 3, we explain our experimental

setup. Section 4 presents the quantitative results. Section 5 describes related work.

Finally, we conclude in Sect. 6.

2 Background on GPU Cache Organization

The first general-purpose GPU architecture (Tesla architecture) from NVIDIA only

had programmer-managed caches. Hardware-managed caches were introduced in

GPUs starting from the Fermi architecture. Hardware-managed caches accelerated

the use of GPUs for general-purpose computing. Several works compared the

performance of Tesla and Fermi GPUs and reported that hardware-managed caches

play an important role in the higher performance of Fermi GPUs over Tesla GPUs

[3, 7, 29]. GPU caches face different design challenges than CPU caches due to their

different characteristics. For instance, write and allocation policies are quite

different from CPU caches. The L1 data cache is only write-back for local accesses

and write-evict for global accesses whereas in a CPU we either have write-back or

write-through caches. The allocation policy is usually no-write allocate for global
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accesses and write-allocate for only local accesses. The deviation in write and

allocation policies is to cater to the different requirements of GPU workloads and

smaller caches. GPU caches are shared by thousands of threads which make them a

scarce resource and a victim of a lot of contention. Furthermore, due to the

streaming nature of many GPU applications and smaller cache sizes, caches can

suffer from thrashing and a high miss rate. Therefore, exploiting locality is hard due

to a large number of active threads and smaller caches. In fact, some works reported

negative performance with hardware-managed caches [9, 19].

Figure 1 shows a typical memory hierarchy in GPUs. It consists of a large

register file, an on-chip programmer-managed scratchpad, known as shared memory

in CUDA, hardware-managed caches (typically two levels), and a high-bandwidth

off-chip DRAM, also known as global memory. In addition, GPUs employ constant

and texture memories for special purposes.

Table 1 shows L11 and L2 data cache size per thread for different generations of

NVIDIA architectures. The L1 data cache size ranges from 24 KB to 128 KB, while

the L2 data cache size ranges from 768 KB to 6 MB. While both L1 and L2 data

cache sizes have increased over the different generations, especially the L2 data

cache size, the availability of L1 and L2 data cache per thread is only a few bytes

compared to a CPU. For example, Intel Core i9-9900K CPU has 256 KB, 2 MB, 16

MB of L1, L2, and L3 data caches, respectively. With 16 threads this corresponds to

16 KB, 128 KB, and 1 MB of L1, L2, and L3 data cache per thread, respectively.

Table 1 shows, in contrast to CPUs, data cache per thread is only 12–64 B for L1

data cache, and for L2 data cache, it is 32–102.4 B. With only a few bytes per

thread, it is extremely difficult to exploit spatial and temporal locality for GPUs.

Thread-blocks and warps are thread scheduling granularities in GPUs. Both

thread-blocks and warps can affect the data locality in GPU caches. Thread-blocks

or co-operative thread arrays (CTA) in NVIDIA terminology are independent units

Fig. 1 Overview of a typical memory hierarchy in GPUs

1 The largest value is shown for a split between L1 data cache and shared memory.
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of scheduling on streaming multiprocessors (SMs). A thread block is divided into

warps for further scheduling within an SM. A warp consists of 32 threads that

execute the same instruction in the lockstep. A thread block can be scheduled on any

SM. This feature allows transparent scalability as simply more thread-blocks can be

scheduled in parallel when more SMs are available and vice-versa. As thread-blocks

can be scheduled on any SM, it is very hard to exploit inter-thread block locality at

L1 caches because the L1 cache is private to an SM. For example, when two thread-

blocks have inter-thread block locality but they are scheduled on different SMs,

there is no way to exploit inter-thread block locality at L1. L2 cache is useful for

exploiting inter-thread block locality in this case as the L2 cache is shared among all

SMs. Therefore, we have a relatively large L2 cache, which helps to filter requests

to off-chip memory. While L1 cache size on GPUs is approaching the size of L1

cache on CPUs and L2 cache is larger than CPUs, the per-thread availability is very

low compared to a CPU.

A typical cache line size is 128 B in GPUs. The loads and stores were normally

serviced at the granularity of a cache line until the Fermi architecture. However,

starting from the Kepler architecture and subsequently, in other architectures such

as Maxwell, Pascal, and Volta, the loads and stores can be serviced at 32 B

granularity. The 32 B granularity is known as a sector. These architectures still have

a cache line size of 128 B, but a cache line is divided into 4 sectors. Such a cache

design is also known as a sectored cache. There are byte masks, and on a miss, a

sectored cache will only fetch the 32 B sectors that are requested. A full cache line

is not automatically fetched, however, if all four sectors are requested, it is also

possible to fetch a full cache line.

2.1 Locality Classification

As a thread block (also known as CTA) and a warp, can affect data locality, we

classify and study locality at warp and thread block granularities. We classify the

locality as intra-warp locality when a cache line is initially referenced by a warp

and then re-referenced by the same warp. When a cache line is re-referenced by a

Table 1 L1 and L2 data cache per thread for NVIDIA’s different architectures

Architecture Representative

GPU

Max threads (SM/

GPU)

L1

(KB)

L2

(KB)

L1/thread

(B)

L2/thread

(B)

Tesla GTX-8800 N/A N/A N/A N/A

Fermi GTX-580 1536/24576 48 768 32 32

Kepler GTX-780 2048/24576 48 1536 24 64

Maxwell GTX-Titan X 2048/49152 24 2048 12 42.6

Pascal GTX-1080 2048/40960 48 4096 24 102.4

Volta TITAN V 2048/163840 128 6144 64 38.4

Turing RTX 2080 1048/50304 64 4096 64 83.4

Ampere RTX 3080 2048/139264 128 5120 64 37.6
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different warp than the one initially requested the cache line, we classify such a

locality as inter-warp locality. Similar to intra-warp and inter-warp locality, we

classify the locality as intra-CTA locality and inter-CTA locality. Table 2 shows a

summary of the locality classification.

3 Experimental Setup

3.1 Simulator

We use the cycle-accurate gpgpu-sim simulator for simulating different benchmarks

[2]. We configure the simulator to have two-level data caches with a cache line size

of 128 B. Table 3 summarizes the main configuration parameters of the simulator.

To generate data for the limit study, we modify the simulator to add counters for

L1/L2 cache accesses, warp id, CTA id, bytes accessed within a cache line, etc. We

simulate all benchmarks and store counters in a database. The database is quite big

(about 1TB) as we store information about all accesses. We then post-process the

database using a tool written in C/C?? to extract the locality data presented in the

paper.

3.2 Benchmarks

Table 4 shows the benchmarks used for the experimental evaluation. We include

benchmarks from the popular Rodinia benchmark suite [4] and CUDA SDK [18]

that have memory divergence. From each benchmark, we select a single kernel

launch with the highest memory divergence, and when a benchmark has multiple

kernels, we only include kernels that have memory divergence. A benchmark is

memory divergent if all intra-warp memory accesses of a load or a store instruction

cannot be coalesced into one memory transaction/cache access2. We use coalescing

efficiency to note the degree of memory divergence. The lower the coalescing

efficiency, the higher the degree of memory divergence. The coalescing efficiency is

given by the following equation:

CE ¼
X

GMI=
X

GMT

GMI is the total number of global memory instructions executed for a benchmark

and GMT is the corresponding number of global memory transactions issued. The

non-memory divergent workloads have 100% coalescing efficiency (1/1). The ratio

of global memory instructions and global memory transactions is 1 (assuming 32-bit

data is accessed by each thread) i.e, for one load from a warp, one memory

transaction is generated. In other words, one cache line is accessed for one load from

a warp. The full-divergent workloads have about 3% coalescing efficiency (1/32).

The ratio of global memory instructions and global memory transactions is 1/32 i.e,

for one load from a warp, 32 memory transactions are generated, one transaction for

each thread within a warp. In other words, one cache line is accessed for each thread

2 Two memory transactions/cache accesses when coalescing is done at half warp.
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of a warp (assuming 32 threads in a warp). The coalescing efficiency (CE) metric

measures the degree of memory divergence, i.e, how many cache accesses for one

load/store of a warp. The coalescing efficiency metric is also reported by NVIDIA’s

profiler. Table 4 shows the coalescing efficiency of the benchmarks.

4 Results

We present the results of the quantitative study of locality in L1 and L2 data caches.

In Sect. 4.1, we present results for cache line reuse. Section 4.2.1 presents the

analysis of the spatial utilization of cache lines. In Sect. 4.3, we study the hit and

miss rate at warp and CTA levels. We calculate the average hit and miss rates by

accumulating accesses of all benchmarks.

4.1 GPU Data Cache Lines Reuse Limit

Figure 2 shows the reuse of L1 data cache lines. Figure 2a shows the reuse of L1

data cache lines for 16 KB size. The figure shows that for several kernels such as

histogram, kmeans1, scan1, the cache lines are evicted without any reuse. Only a

few kernels such as storeGPU, mergeSort2, and leukocyte have all cache lines

reused. The average cache line reuse is only 43%, which means that 57% of the

cache lines are never re-referenced or get evicted before re-reference.

As GPU caches are much smaller than CPU caches, in particular the share per

thread, there is a high probability that the cache lines get evicted before reuse due to

high contention. In order to study the lost opportunities to reuse cache lines due to

Table 2 Summary of locality

classification
Locality category Description

Intra-warp Locality from threads of the same warp

Inter-warp Locality from different warps

Intra-CTA Locality from warps of the same CTA

Inter-CTA Locality from different CTAs

Table 3 Summary of simulator configuration

Parameter Value Parameter Value

#SMs 16 Shared memory/SM 48 KB

SM freq (MHz) 822 L1 $ size/SM 16/32 KB

Max #Threads per SM 1536 L2 $ size 768/2304 KB

Max #CTA per SM 8 # Memory controllers 6

Max CTA size 512 Memory type GDDR5

#FUs per SM 32 Memory clock 2004 MHz

#Registers/SM 32 K Memory bandwidth 192.4 GB/s
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limited cache size, we also simulate an L1 data cache with an infinite size. The

infinite cache size here implies that once a cache line is brought to the cache, it

never gets evicted. Figure 2b shows the L1 data cache lines reuse with an infinite

size. The average cache lines reuse for the infinite L1 data cache is 70%, which

shows that most of the kernels have high locality but current GPUs are unable to

exploit the locality due to limited cache size. However, even with the infinite cache

size, 30% of the L1 data cache lines have no data reuse. These cache lines can be

safely replaced or evicted without any loss in data locality.

The L1 data cache lines analysis shows low reuse, especially for the default cache

size. Along with the reuse, it is also important that the cache lines are spatially

utilized, otherwise, we might be wasting significant cache capacity for unneeded

data. Therefore, in the next section, we will study the spatial utilization of cache

lines in detail.

Observation 1: The limit study of cache lines reuse shows a much higher reuse

(70%) than currently exploited (43%) by GPUs.

Table 4 Memory-divergent benchmarks used for the experimentation. A benchmark with subscripts

designates distinct kernels of the same benchmark

Name Launch id CE (%) Domain Description

histogram 36 3 Data analytics Histograms for analysis [18]

kmeans1 1 6 Data mining k-means clustering [4]

scan1 11 5 Data analytics Parallel prefix sum [18]

srad2_1 1 56 Image processing Speckle reducing anisotropic diff. [4]

srad2_2 2 53 Image processing Speckle reducing anisotropic diff. [4]

bfs 15 47 Graph analytics Breadth-first search [4]

ss1 9 11 Data mining Similarity score calculation [4]

b?tree1 1 75 Graph analytics Graph search [4]

b?tree2 2 75 Graph analytics Graph search [4]

srad1_1 5 70 Image processing Speckle reducing anisotropic diff. [4]

srad1_2 11 79 Image processing Speckle reducing anisotropic diff. [4]

mummergpu 1 7 Bioinformatics Pairwise local sequence alignment [4]

storeGPU 1 41 Data analytics Distributed storage systems [1]

mergesort1 2 5 Data analytics Parallel merge-sort [18]

mergesort2 3 50 Data analytics Parallel merge-sort [18]

mergesort3 41 67 Data analytics Parallel merge-sort [18]

convSep1 1 50 Machine learning Convolution [18]

convSep2 2 43 Machine learning Convolution [18]

backprop1 2 64 Machine learning Multi-layer perceptron training [4]

heartwall 2 54 Medical imaging Ultrasound image tracking [4]

hotspot 1 35 Physics simulation Processor temperature estimation [4]

leukocyte 3 51 Medical imaging Microscopy video tracking [4]
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4.2 Spatial Utilization of GPU Data Cache Lines

GPUs use a wide cache line size as threads from a warp usually access nearby data

that can be packed into one cache line. This is true for non-memory divergent

applications, however, for memory-divergent applications wider cache lines result

in severe wastage of resources as most of the bytes are left unused [20]. We study

in-depth the spatial utilization of cache lines. While some of the findings are

intuitive, there is a lack of quantitative numbers to support the intuition. Our study

fulfills this gap by providing concrete numbers for the spatial utilization of cache

lines, enabling optimizations for the cache design.

4.2.1 Spatial Utilization Limit and Over-fetch

Figure 3 shows the spatial utilization of L1 data cache lines. Each kernel has two

bars. The first bar shows the average initial utilization of a cache line, i.e. when a

cache line is initially fetched. The second bar shows the average final utilization of a

cache line, i.e., when a cache line is evicted. For calculating the spatial utilization,

we use a bit vector of length equal to a cache line size. The bits corresponding to

bytes that are requested at the time of fetching a cache line are initially set, and the

bit vector is updated whenever a cache line is reused until the cache line is finally

evicted.

Fig. 2 GPU L1 data cache lines reuse
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Figure 3a shows the spatial utilization of the L1 data cache lines for 16 KB cache

size. The figure shows that for many kernels, the initial and the final utilization of

cache lines is almost the same, which means there is a very low spatial utilization of

data cache lines like reuse. Only kernels such as b?tree1, b?tree2, srad1,
mergesort2, mergeSort3, convSep1, backprop1, and leukocyte have significantly

higher final spatial utilization of cache lines. The average initial and final utilization

of cache lines is 46 B and 65 B for all kernels, meaning 63 B on average are over-

fetched and never used. This implies that about 50% of the cache capacity (63 B out

of 128 B of a cache line), and other scarce resources such as network-on-chip

bandwidth, L2 data cache bandwidth, etc., are wasted due to the data over-fetch.

The low spatial utilization of cache lines could also be due to the limited cache

capacity and high contention as a cache line may be evicted before it gets re-

referenced. To study the upper limit of the spatial utilization of cache lines, we

simulate an infinite L1 data cache. Figure 3b shows the final utilization of cache

lines for an infinite L1 data cache. The figure shows that most of the kernels actually

have higher spatial locality than exploited by the default cache size, however, GPUs

are unable to exploit full spatial locality. The average final utilization of cache lines

for the infinite L1 data cache is 81 B, which is 24% higher than the default cache

size. However, even with the infinite cache size, 36% of the cache capacity is still

wasted. This implies that there is a potential for further improvements in the cache

design.

Fig. 3 GPU L1 data cache lines spatial utilization showing data over-fetch
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There are two important conclusions that we can draw from the spatial utilization

of cache lines. First, on the one hand, the low initial spatial utilization of cache lines

justifies the sector cache design of new GPU architectures such as Maxwell, Pascal,

and Volta architectures. That is only fetch the sectors that are required at the time of

issuing a memory request. On the other hand, the much higher final spatial

utilization of cache lines, as shown by our experiments, presents an opportunity for

further optimizing cache designs. For example, if we only fetch the sectors on

demand depending on the initial utilization of a cache line, we significantly lose the

spatial locality present in the kernels. The initial sectors that need to be fetched for a

memory request can be determined at the time of coalescing memory requests of

threads of a warp. If we only fetch the sectors as determined during coalescing,

which is how it is done in recent GPUs, there will be significant lost opportunities

for exploiting locality as our analysis shows that the final utilization of cache lines is

much higher than the initial utilization of cache lines (see Fig. 3). One possible idea

to exploit the lost locality is to investigate the use of spatial locality predictor and

depending upon the prediction, fetch the predicted sectors.

We also did a similar kind of analysis for the L2 data cache. Figure 4 shows the

spatial utilization of L2 data cache lines for 128 KB as well as infinite cache sizes.

Figure 4 shows that the L2 data cache has better spatial utilization of cache lines

compared to the L1 data cache. This is because the L2 data cache is shared by

multiple processors. The average initial and the final utilization of cache lines is 54

B and 85 B, respectively. This means that 35% of the L2 data cache capacity is

Fig. 4 GPU L2 data cache lines spatial utilization showing data over-fetch
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wasted, which is lower than the L1 data cache but still significant to look for further

optimizations. The wastage of the L2 data cache is also a measure of wasted off-

chip memory bandwidth. The average final utilization of cache lines is 95 B for the

infinite cache, which is almost 2.0� more compared to the average initial utilization

of cache lines. The big difference between the initial and the final utilization of

cache lines shows that pure demand-based sector fetching, implemented in GPU

caches, needs to be revisited to improve their performance. The analysis also shows

that we need more aggressive policies to properly utilize the L1 cache than the L2

cache.

Observation 2: The spatial utilization study shows that about 50% of the L1

cache capacity, and other scarce resources such as NoC bandwidth, memory

bandwidth are wasted due to data over-fetch. The limit study shows 64% spatial

utilization, warranting further optimizations to cache designs. For instance, the pure

demand-based sector fetching in GPU caches can be improved by using a simple

spatial locality predictor.

We studied the spatial utilization of cache lines and their limit (Figs. 3 and 4).

However, the study does not show how much spatial locality is exploited at a warp

and a CTA level. Because a warp and a CTA are two important units of scheduling

in GPUs, and both of them can affect the spatial utilization of cache lines, we also

study in detail the spatial locality at warp and CTA levels in the next section.

Fig. 5 Intra- and inter-warp spatial utilization of L1 data cache
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4.2.2 L1 Data Cache Spatial Utilization at Warp and CTA Levels

Figure 5 shows the intra- and inter-warp spatial utilization of the L1 data cache.

Figure shows the initial cache line utilization, that is the number of bytes needed at

the time of a cache line allocation, final cache line utilization, the number of bytes

utilized when the cache line is evicted. The figure also shows the final intra-warp

cache line utilization, which is the number of bytes utilized at the time of eviction

by the same warp that initially allocated the cache line. Similarly, the final inter-

warp cache line utilization shows the number of bytes used at the time of eviction by

different warps than the one which allocated the cache line. The final cache line

utilization is the utilization by all warps, without differentiating between intra- and

inter-warps, at the time of eviction.

Figure 5a shows the warp level spatial locality for the 16 KB cache. The average

final intra- and inter-warp spatial utilization is 52 B and 60 B for the 16 KB cache,

while for the infinite cache, the final intra- and inter-warp spatial utilization is 66 B.

Figure 6 shows the final intra- and inter-CTA spatial utilization of L1 data cache for

both 16 KB and infinite cache. The final intra-CTA cache line utilization shows the

number of bytes used by all warps in a CTA when the cache line is evicted.

Similarly, the final inter-CTA cache line utilization shows the number of bytes used

by other CTAs than the one which allocated the cache line when the cache line is

evicted.

Fig. 6 Intra- and inter-CTA spatial utilization of L1 data cache
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While the warp level spatial locality (Fig. 5) shows that intra- and inter-warp

accesses contribute almost the same to the spatial locality, the CTA level analysis

shows that intra-CTA (79 B) accesses contribute much more spatial locality than the

inter-CTA (52 B). The higher final intra-CTA spatial utilization also means that the

warps within a CTA contribute higher to spatial locality, and they should be

prioritized for scheduling over warps from a different CTA. While Fig. 5 shows that

inter-warp locality is close to intra-warp, it was not clear that these inter-warps

belong to the same CTA.

Observation 3: The spatial utilization limit study at warp and CTA levels shows

that intra-warp and inter-warp accesses contribute equally to the spatial locality,

while most of the inter-warp locality belongs to the warps from intra-CTAs rather

than inter-CTAs (79 B vs. 52 B). This implies that optimizations targeting spatial

utilization such as spatial locality predictor should consider both intra-warp and

inter-warp accesses from the same CTA as an important feature.

4.2.3 L2 Data Cache Spatial Utilization at Warp and CTA Levels

Figures 7 and 8 show the warp and CTA levels spatial utilization of L2 data cache,

respectively. The figures show that the spatial utilization of L2 data cache is higher

than L1 data cache owing to its shared nature across all streaming multiprocessors.

The final intra- and inter-warp spatial utilization is 63 B and 76 B for the 128 KB L2

data cache, while for the infinite cache, the final intra- and inter-warp spatial

Fig. 7 Intra- and inter-warp spatial utilization of L2 data cache
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utilization is 69 B and 82 B, respectively. The final intra- and inter-CTA spatial

utilization is 66 B and 73 B for the 128 KB L2 data cache, while for the infinite

cache intra- and inter-CTA spatial utilization is 73 B and 82 B, respectively. The

final L2 data cache lines utilization is 85 B and 95 B for 128 KB and the infinite

size, respectively.

While the results show higher inter-warp locality both for the finite and infinite

L2 data cache (Fig. 7), there are some interesting observations from the CTA level

results as shown in Fig. 8. Figure 7 shows that inter-warp contributes more to data

locality, however, unlike the L1 data cache, these inter-warps belong to different

CTAs as shown by higher utilization in Fig. 8.

Observation 4: The spatial utilization limit study at warp and CTA levels shows

that inter-warp accesses contribute more to the spatial locality (82 B vs. 69 B), while

most of the inter-warp locality comes from warps that belong to inter-CTAs rather

than intra-CTAs (82 B vs. 73 B), unlike the L1 data cache.

4.3 Hit and Miss Rate Limit

As hit and miss rates are important metrics to evaluate a cache design, we also

present hits and misses for both L1 and L2 data caches. We classify hits into four

categories, intra-warp and inter-warp hits, intra-CTA and inter-CTA hits. As a warp
is an important scheduling unit within a streaming multiprocessor, the hit ratio at a

Fig. 8 Intra- and inter-CTA spatial utilization of L2 data cache
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warp granularity provides crucial information that could be used for both scheduling

warps and improving cache design.

4.3.1 Warp-Level Hit and Miss Rate

Figure 9 shows the intra- and inter-warp hits of the L1 data cache. Figure 9a

shows that the L1 data cache has 31% intra-warp and 43% inter-warp hits for 16 KB

cache size. The miss rate is 26% which is quite high. In contrast to GPUs, CPUs

have a hit rate typically between 95 and 97% for an L1 cache [6]. As discussed

earlier, it is extremely difficult to exploit data locality in GPU caches due to several

factors such as small size, and massive multithreading.

Figure 9b shows the intra- and inter-warp hits for the L1 data cache with the

infinite size. The figure shows that the average hit rate is about 96%, which is close

to a typical hit rate for a CPU L1 cache. Concretely, on average, we have 50% intra-

warp and 46% inter-warp hits. There are a couple of interesting observations. First,

kernels actually have a significantly higher locality but the current GPUs are not

able to fully exploit it. Second, in contrast to some existing work [21], which shows

much higher intra-warp locality than inter-warp locality, we see an almost equal

division between the intra-warp and inter-warp localities. This is possible for

memory-divergent workloads as they have scattered memory accesses and threads

from different warps (which contribute to inter-warp hits) can access the data from

Fig. 9 Intra- and inter-warp locality of L1 data cache
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the same cache line. This can happen more frequently for memory-divergent

workloads.

We also study the intra- and inter-warp hits for the L2 data cache. Figure 10

shows the intra- and inter-warp hits for the L2 data cache. The average intra-warp

and inter-warp hits are 30% and 15%, respectively, for the 128 KB size, while for

the infinite size, the average intra-warp and inter-warp hits are 65% and 21%,

respectively. An important point that is not evident after looking at the intra- and

inter-warp locality is whether the warps belong to the same CTA or different CTAs.

This could also provide useful insight as CTAs are units of work distribution across

different streaming multiprocessors. Moreover, the quantitative numbers further

provide information on making scheduling decisions, for example, should we first

schedule the warps from the same CTA or different CTAs.

Observation 5: The limit study shows significantly higher inter-warp hits (46%)

at the L1 cache in contrast to the previous study [21]. This is possible for memory-

divergent workloads as they have scattered memory accesses.

4.3.2 CTA-Level Hit and Miss Rate

Figure 11 shows the intra- and inter-CTA locality of the L1 data cache for 16 KB

and infinite sizes. Figure 11a shows that on average, there are 68% intra-CTA hits

and 5% inter-CTA hits, which shows that a high percentage of inter-warp hits shown

in Fig. 9 are basically from warps within the same CTA. This is more evident when

Fig. 10 Intra- and inter-warp locality of L2 data cache
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we look at the average numbers for the infinite L1 data cache. On average, 91% hits

are intra-CTA and only 5% are inter-CTA. Figure 12 shows a similar analysis for

the L2 data cache. For the infinite L2 data cache, inter-CTA hits are 13%, which

shows that there is a potential for better scheduling. For example, if we can schedule

such CTAs on the same streaming multiprocessor, there is a possibility to exploit

more inter-CTA locality at the L1 data cache that can lead to better performance.

Observation 6: The CTA level hit rate confirms a higher intra-CTA locality at

the L1 cache and inter-CTA locality at the L2 cache.

4.4 Cache Sensitivity of Memory-Divergent Workloads

We show that memory-divergent workloads have much higher data locality than

currently exploited by GPUs (see Sects. 4.1, 4.2, 4.3). To further show that the

increase in data locality will boost the performance of memory-divergent workloads

instead of degrading them, we conduct experiments by increasing the L1 cache size.

Although, the increase in the cache size is not a direct measure of increased locality,

it nonetheless, helps to capture the locality that otherwise gets lost due to smaller

cache size in GPUs. Figure 13 shows the speedup of memory-divergent benchmarks

with the increase of L1 cache size. The results show that the performance of

memory-divergent benchmarks increases up to 6.3� and on average by 1.62�.

More importantly, the performance does not degrade, not even in one case.

Although not all benchmarks gain in performance, the increase in data locality will

Fig. 11 Intra- and inter-CTA locality of L1 data cache
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save resources such as cache capacity, memory bandwidth, which can be used by

other concurrently running benchmarks, or to save power consumption.

4.5 Potential Improvements to GPU Cache and Warp Scheduler Design

Based on the quantitative analysis of data locality for memory-divergent workloads,

we see two main architectural improvements that can potentially improve the

performance of GPUs.

Fig. 12 Intra- and inter-CTA locality of L2 data cache

Fig. 13 Effect of L1 size on the performance of memory-divergent workloads
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4.5.1 Augment Sector Cache with Spatial Locality Prediction

Based on the findings of the limit study that GPU L1/L2 caches have much higher

spatial locality than currently exploited by GPUs, we see an excellent opportunity to

improve the spatial utilization of caches (and performance of GPUs) by fetching

sectors into a cache based on a spatial locality predictor. The current generations of

GPUs employ sector caches and fetch only those sectors of a cache line that are

required at the time of issuing a memory request. While a sector cache design can

save significant over fetching of data compared to a non-sector cache, it is still a

conservative design and misses the opportunities to exploit higher spatial locality

present in GPU caches. Our limit study shows that the final spatial utilization of L1

cache lines (81 B) is 24% higher than the default cache size (65 B) and 76% higher

than the initial spatial utilization (46 B). If we only fetch sectors based on the initial

utilization, which is how it is done in current GPUs, there will be significant lost

opportunities for exploiting locality. Moreover, we need to issue additional memory

requests to fetch the missing sectors of the same cache line.

A table-based spatial locality prediction has been proposed to improve the cache

design of CPUs [10]. While it will be interesting to explore the possibility of

adopting a table-based spatial locality predictor also for GPUs, the more recent

approaches such as using deep learning to improve GPU architecture might be more

accurate and performance efficient [24]. In any case, our limit study at warp and

CTA levels further help to improve the design of the predictor by providing

significant insights about the entries that should be cached in a table-based design or

the features that should be explored in a deep learning-based predictor.

4.5.2 Warp Scheduler Improvements

GPU warp scheduling is a well-explored area with different schedulers typically

taking warp and CTA levels locality into consideration while making scheduling

decisions [17, 21, 22]. For example, Rogers et al. [21] show much higher intra-warp

locality than inter-warp locality, hence, the proposed warp scheduler also gives

priority to intra-warp accesses. In contrast to the previous work, which did not focus

on memory-divergent workloads, our limit study shows 50% intra-warp and 46%

inter-warp hits at the L1 cache for memory-divergent workloads. This is possible for

memory-divergent workloads as they have scattered memory accesses and threads

from different warps (which contribute to inter-warp hits) can access the data from

the same cache line. This can happen more frequently for memory-divergent

workloads compared to regular workloads. Therefore, we see another possibility to

improve the warp/CTA scheduling decisions by taking the memory-divergence of

an application into account. A simple memory access pattern sampler could be

employed to figure out the type of workloads, memory-divergent vs. non-memory

divergent, indicating the difference in the data locality of workloads. A locality-

driven warp scheduler can adjust the scheduling decisions as per the sampler

information. As the main goal of this work is to study the data locality of memory-

divergent workloads in detail, we leave the potential architectural improvements for

the future.
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4.6 Summary of Quantitative Analysis

Table 5 presents a summary of the quantitative analysis of data locality in GPU data

caches for quick reference. Table shows cache lines reuse, spatial utilization, and hit

rate at warp and CTA level granularities. We only show the final numbers with

default and infinite cache sizes for L1 and L2 data caches for brevity. We assume a

cache line size of 128 B. The spatial utilization numbers are in bytes. The unused

bytes for a cache line can be simply calculated from the table. For example, a spatial

utilization of 65 B with 16 KB of L1 cache means that 63 B are left unused.

Similarly, the percentage of misses is not shown but can also be calculated from the

table. For example, the intra- and inter-warp hits are 31% and 43% for 16 KB L1

data cache, which means the misses are 26%.

5 Related Work

We divide the related work into two categories. First, we present the related work on

the study of locality in GPU caches. As we use memory-divergent workloads, we

also present the main work done on memory divergence. We discuss the work done

to tolerate memory divergence as well as work performed to reduce/eliminate

memory divergence.

5.1 Related Work on Locality in GPU Caches

Several works report that hardware-managed caches play an important role in the

higher performance of GPUs [3, 7, 29]. It is also well-known that exploiting locality

is crucial in GPUs, otherwise, hardware-managed caches can also cause negative

performance [9, 19, 27]. As sometimes, the use of caches can degrade performance,

there have been several studies, which show that bypassing caches could lead to

higher performance [5, 13, 15, 30]. However, to the best of our knowledge, there is

not much work done to quantify the locality in GPU caches. Rogers et al. [21]

Table 5 Summary of the

quantitative analysis of locality

in GPU data caches

Parameter L1 data cache L2 data cache

16 KB Infinite 128 KB Infinite

Reuse 43% 70% – –

Spatial util 65 B 81 B 85 B 95 B

Intra-warp util 52 B 66 B 63 B 69 B

Inter-warp util 60 B 66 B 76 B 82 B

Intra-CTA util 65 B 81 B 66 B 73 B

Inter-CTA util 65 B 81 B 73 B 82 B

Intra-warp hits 31% 50% 30% 65%

Inter-warp hits 43% 46% 15% 21%

Intra-CTA hits 68% 91% 35% 72%

Inter-CTA hits 5% 5% 10% 14%
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propose a cache-aware warp scheduling mechanism, based on estimated intra-warp

locality, to capture locality that is lost by other schedulers due to excessive

contention for cache capacity. They reported that the majority of data reuse

observed in highly cache sensitive benchmarks comes from the intra-warp locality

and therefore, give priority to intra-warp instructions to access the L1 data cache. Li

et al. [14] quantify the percentage of the inter-CTA reuse, which is based on the data

reuse of all the memory requests generated from streaming multiprocessors before

they enter the L1 cache. Tang et al. [25] quantitatively analyze the data reuse of

dynamic applications and propose hardware scheduler to improve data locality at

runtime. In contrast, we present a comprehensive quantitative study of L1 and L2

data caches in GPUs, highlighting the gap between the locality exploited and the

maximum locality actually present in memory-divergent workloads.

5.2 Related Work on Memory Divergence

Meng et al. [16] introduce dynamic warp subdivision (DWS), which allows a single

warp to occupy more than one slot in the scheduler without requiring extra register

file space. Independent scheduling entities allow divergent branch paths to

interleave their execution, and allow threads that hit to run ahead. The DWS does

not improve memory divergence, but results in improved latency hiding and

memory level parallelism. Tarjan et al. [26] propose adaptive slip, which allows a

subset of threads from SIMD warps to continue execution while other threads in the

same warp are waiting for memory. This provides benefits when runahead threads

prefetch cache lines for lagging threads. It also increases throughput when divergent

threads experience misses and runahead and lagging threads continually leapfrog

each other, rather than continually being held back by the slowest thread. The key

insight is that SIMD cores’ support for branch divergence can be elegantly extended

to support memory divergence.

Zhang et al. [31] propose a software solution called G-Streamline to improve

both irregular memory references and control flow. G-Streamline eliminates

irregularity by enhancing the thread-data mappings on the fly. The key idea is that

both irregular memory references and control flows essentially stem from an inferior

mapping between threads and data (data locations for the former; data values for the

latter). This perspective leads to the basic strategy of G-Streamline for irregularity

elimination: enhancing the thread-data mappings on the fly. Dynamic irregular

references are those whose memory access patterns are unknown (or hard to know)

until the execution time. Being dynamic, these references are especially hard to

tackle, making effective exploitation of GPUs difficult for many applications in

various domains, including fluid simulation, image reconstruction, dynamic

programming, data mining.

Sartori and Kumar [23] propose branch and data herding, which exploit error

tolerance of applications to reduce memory divergence. Branch and data herding is

based on the observation that many GPU applications produce acceptable outputs

even if a small number of threads in a SIMD execution unit are forced to go down

the wrong control path or are forced to load from an incorrect address. Data herding

eliminates memory divergence by forcing each thread in a warp to load from the

123

International Journal of Parallel Programming



most popular memory block accessed by a warp load, allowing all the loads to be

coalesced into a single memory request. However, there is an obvious limitation that

it can only be used for error-tolerant applications. Lal et al. [11] investigate

performance bottlenecks in GPUs and show that several workloads have a high

degree of memory divergence that can cause low performance.

In addition to memory divergence tolerance, reduction, and elimination, some

recent studies have also focused to model the performance of memory divergence

workloads [8, 28]. Huang et al. [8] propose the GPUMech, an analytical

performance model for GPU architectures based on interval analysis. Wang et al.

[28] also propose an analytical performance model for GPUs called, the Memory

Divergence Model (MDM). While both models are equally accurate for non-

memory divergent applications, MDM achieves higher accuracy (13.9% average

prediction error) compared to GPUMech (162% average prediction error) for

memory-divergent applications.

6 Conclusions

GPUs can deliver peak performance in TFLOPs, however, the peak performance is

often difficult to achieve due to several performance bottlenecks. Memory

divergence is one such performance bottleneck that can lead to poor cache

performance such as cache thrashing and high miss rate, impeding GPU

performance. As exploiting data locality is crucial for performance, we conduct

the first detailed quantitative study of data locality in GPU caches, showing the

limits of locality for memory-divergent workloads at different granularities. Our

analysis shows that memory-divergent workloads have significantly higher locality,

but the current GPUs are not able to fully exploit it. We show that 57% of the cache

lines are never re-referenced, however, the limit study shows that only 30% of the

cache lines are never re-referenced and 27% are evicted before re-reference. We

further find that about 50% of the L1 data cache capacity, consequently also NoC

bandwidth, are wasted due to data over-fetch. While the low spatial utilization

justifies the sectored-cache design as it can save some scarce resources, the limit

study reveals that the sectored-cache design is conservative and misses the

opportunities to exploit higher spatial locality present in GPU caches. We also study

the temporal and spatial locality at warp and CTA levels and observe that, in

contrast to previous studies, there is a significantly higher inter-warp locality for L1

data cache for memory-divergent workloads due to scattered accesses, which can

influence warp scheduling policies. Similarly, the locality analysis at the CTA level

shows 13% inter-CTA hits at the L2 data cache, which shows the potential for better

CTA scheduling across multiprocessors. While some of the findings are intuitive,

there is a lack of data, which our study fulfills by providing concrete numbers.

Based on the quantitative analysis, we also provide some suggestions to improve the

cache design. We believe that our findings provide significant insights that will help

to improve the GPU cache design. In the future, we plan to use some of the key

insights to improve GPU performance.
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Appendix

Analysis of L1 Data Cache Locality with 32 KB Size

We conducted new experiments with increased L1 and L2 data cache sizes to match

recent GPUs. As shown in Table 1 in the main paper (L1 and L2 data cache per

thread for NVIDIA’s different architectures), Volta/Turing/Ampere architectures

have 2� more L1 data cache per thread compared to the Fermi architecture.

Although, Volta and Ampere architectures have only a bit more share of L2 data

cache per thread, Turing has about 2.6� more L2 data cache per thread. Therefore,

we increased the L1 data cache size by 2� (16 � 2 = 32 KB) and L2 data cache size

by 3� (128 � 3 = 384 KB) to be representative of more recent architectures and

repeated experiments for data locality analysis. We only present the main results for

L1/L2 data caches as we only observe small changes with respect to results

presented in the main paper.

Figures 14, 15, 16, and 17 show the L1 data cache lines reuse, spatial utilization,

intra- and inter-warp spatial utilization, and intra- and inter-warp hits for 32 KB

size. As expected, we only see small improvements in the L1 data cache lines reuse

(3.6%), spatial utilization (4%), and hit rate (1.1%).

Fig. 14 L1 data cache lines reuse with 32 KB size

Fig. 15 L1 data cache lines spatial utilization with 32 KB size
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Analysis of L2 Data Cache Locality with 384 KB Size

Figures 18, 19 and 20 show the L2 data cache lines spatial utilization, intra- and

inter-warp spatial utilization, and intra- and inter-warp hits for 384 KB size. Similar

to the L1 data cache, we also see small improvements in the L2 data cache lines

spatial utilization (3%), and hit rate (18%) when the L2 cache size is increased by

3�. This shows that more recent GPUs will also have similar issues. Therefore, the

potential improvements as suggested in the paper are also applicable for more recent

GPUs.

Fig. 17 Intra- and inter-warp locality of L1 data cache with 32 KB size

Fig. 18 L2 data cache lines spatial utilization with 384 KB size

Fig. 16 Intra- and inter-warp spatial utilization of L1 data cache with 32 KB size
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