255 research outputs found

    FUNCTIONALIZED SILICON-COMPOUNDS WITH OMEGA-TETRAMETHYL AND OMEGA-PENTAMETHYLCYCLOPENTADIENYLALKYL LIGANDS - MOLECULAR-COMPONENTS FOR THE PREPARATION OF METALLIC POLYMERS

    Get PDF
    Jutzi P, Heidemann T, Neumann B, Stammler H-G. Funktionalisierte Siliciumverbindungen mit [omega]-Tetramethyl- und [omega]-Pentamethylcyclopentadienylalkyl-Liganden: Molekulare Bausteine zur Darstellung von Metall-haltigen Polymeren. Journal of Organometallic Chemistry. 1994;472(1-2):27-38.Peralkylierte Cyclopentadien-Systeme des Typs Me5C5(CH2)3Si(Me)mY3-m, die ĂŒber eine Alkyliden-Spacergruppe mit einer funktionalisierten Silan-Einheit verknĂŒpft sind, sind auf zwei verschiedenen Wegen synthetisiert worden. Als Beispiel fĂŒr den ersten Weg wird die Synthese des Disiloxans [Me5C5CH2)3Si(Me)2]2O (2) beschrieben, welches ausgehend von der Iodverbindung [I(CH2)3Si(Me)2]2O (1) durch Umsetzung mit Me5C5K dargestellt werden kann. Das Trichlorsilan Me5C5(CH2)3SiCl3 (4), als Synthesebeispiel fĂŒr den zweiten Weg, ist ĂŒber Hydrosilylierung von 1-Prop-2-enyl-1,2,3,4,5-pentamethylcyclopenta-2,4-dien (3) zugĂ€nglich. Beide Synthesewege sind auch zur Darstellung der teilweise alkylierten Cyclopentadiensysteme des Typs Me4HC5(CH2)3Si(Me)mY3-m geeignet. So fĂŒhren die Umsetzungen der [omega]-Iodalkyl-triethoxysilane I(CH2)nSi(OEt)3 (n = 1, 2, 3) mit Me4HC5K zu den entsprechenden [omega]-(Tetramethylcyclopentadienyl)alkyl-triethoxysilanen 5–7. Verbindungen 5–7 liegen als Isomerengemische vor; das VerhĂ€ltnis zwischen den Isomeren, die ein allylstĂ€ndiges oder ein vinylstĂ€ndiges Wasserstoffatom am Cyclopentadienring aufweisen, ist abhĂ€ngig von der SpacerlĂ€nge. Isomerengemische der 4-(Tetramethylcyclopentadienyl)butyl-silane des Typs Me4HC5(CH2)4Si(Me)mCl3-m (m = 1, 2, 3) (8–10) mit ausschließlich allyistĂ€ndigem Wasserstoffatom am Cyclopentadienring können durch Hydrositylierung von 1-But-3-enyl-2,3,4,5-tetramethyleyclopentadien dargestellt werden. Die am Siliciumatom funktionalisierten Verbindungen 2 und 4–10 können weiter derivatisiert werden. An ausgewĂ€hlten Beispielen wird die Hydrolyse, die Alkoholyse, die reduktive Kupplung, die Heterogenisierung und die Polykondensationsreaktion nĂ€her untersucht. So erhĂ€lt man das Silanol 12 und das Disiloxan 13, die Alkoxysilane 14–17, das Disilan 18 und die funktionalisierten Kieselgele 19–20. Verbindungen 2, 4–10 und 12–20 dienen als “Pool” zur Darstellung von Übergangsmetall-Derivaten. Beispielsweise wird die Dicarbonyl—Cobalt-Verbindung 21 durch Umsetzung von 8 mit Co2(CO)8 gebildet. Reaktion von 16 mit K und FeCl2 liefert das Ferrocen-Derivat 22. Die [eta]4-gebundenen Pt(II)- und Pd(II)-Komplexe 23–27 können durch Umsetzung der funktionalisierten Si---O-Verbindungen 2, 13, und 19–20 mit [PtCl2(Ethylen)]2 oder PdCl2(PhCN)2 erhalten werden.Peralkylated cyclopentadiene systems of the type Me5C5(CH2)3Si(Me)mY3-m, which possess cyclopentadiene units connected with a functionalized silane fragment by an alkylidene spacer group, are prepared via two routes. As an example of the first route, the disiloxane [Me5C5(CH2)3Si(Me)2]2O (2) has been synthesized from the corresponding iodo compound [I(CH2)3Si(Me)2]2O (1) by reaction with Me5C5K. The trichlorosilane Me5C5(CH2)3SiCl3 (4), as an example of a compound prepared via the second route, has been isolated after hydrosilylation of 1-prop-2-enyl-1,2,3,4,5-pentamethylcyclopenta-2,4-diene (3) with HSiCl3. Both synthetic methods are also suitable for the preparation of partly alkylated cyclopentadiene systems of the type Me4HC5(CH2)nSi(Me)mY3-m. Thus the omega-iodoalkyltriethoxysilanes I(CH2)nSi(OEt)3 (n = 1, 2, 3) react with Me4HC5K to give the corresponding omega-(tetramethyl-cyclopentadienyl)alkyl-triethoxysilanes 5-7. Compounds 5-7 consist of a mixture of isomers; the ratio between isomers having an allylic or vinylic hydrogen atom at the cyclopentadiene ring depends on the spacer length. Isomeric mixtures of the 4-(tetramethyl-cyclopentadienyl)butyl-silanes of the type Me4HC5(CH2)4Si(Me)mCl3-m (M = 1, 2, 3) (8-10) with an allylic hydrogen atom at the cyclopentadiene ring have been prepared by hydrosilylation of 1-but-3-enyl-2,3,4,5-tetramethylcyclopentadiene. The silane fragment in the alkylated cyclopentadiene systems 2 and 4-10 can be modified further. As examples hydrolysis, alcoholysis, reductive coupling, heterogenisation and polycondensation reactions are described. Following theses procedures the corresponding silanol 12 and disiloxane 13 have been prepared as well as the alkoxysilanes 14-17, the disilane 18 and the functionalized silicagels 19 and 20. Compounds 2, 4-10 and 12-20 serve as a ''pool'' for the preparation of transition metal complexes. The dicarbonyl cobalt compound 21 has been synthesized by reaction of 8 with CO2(CO)8. Reaction of 16 with K and FeCl2 gives the corresponding ferrocene derivative 22. The eta4-bound Pt(II) and Pd(II)-complexes 23-27 have been prepared by reaction of the functionalized Si-O-compounds 2, 13, and 19-20 with [PtCl2(Ethylen)]2 and PdCl2(PhCN)2, respectively

    BIS(PENTAMETHYLCYCLOPENTADIENYL)KETONE AND THIOKETONE - CARBON-COMPOUNDS WITH PREFORMED DIELS-ALDER GEOMETRY

    Get PDF
    Jutzi P, SCHWARTZEN KH, Mix A, Stammler H-G, Neumann B. Bis(pentamethylcyclopentadienyl)keton und -thioketon: Kohlenstoff-Verbindungen mit prÀformierter Diels-Alder-Geometrie. CHEMISCHE BERICHTE-RECUEIL. 1993;126(2):415-420.1,2,3,4,5-Pentamethyl-1,3-cyclopentadien-5-carbonyl chloride (2) is formed in good yields by the reaction of pentamethylcyclopentadienyllithium (1) with phosgene. The corresponding carbothioyl chloride 3 is synthesized by treatment of 1 with thiophosgene. Both acyl chlorides are stable against air and moisture and difficult to attack in S(N)2-type reactions. Treatment of 2 and 3 with trimethyl(pentamethylcyclopentadienyl)stannane in the presence of boron trifluoride - ether leads to bis(1,2,3,4,5-pentamethyl-1,3-cyclopentadien-5-yl) ketone (S) and thioketone (6), respectively. Even at room temperature, S and 6 tend to intramolecular [4 + 2] cycloaddition reactions. X-ray crystal structure investigations of 2, 5, and 6 show the steric demand of the pentamethylcyclopentadienyl ligand and explain the untypical chemical behavior of 2 and the easy [2 + 4] cycloaddition reactions of 5 and 6

    PENTAMETHYLDISILANYL-SUBSTITUTED CYCLOPENTADIENES - SYNTHESIS, STRUCTURE AND DYNAMIC BEHAVIOR

    Get PDF
    Jutzi P, Kleimeier J, Krallmann R, Stammler H-G, Neumann B. Pentamethyldisilanyl-substituierte Cyclopentadiene: Synthese, Struktur und dynamisches Verhalten. Journal of Organometallic Chemistry. 1993;462(1-2):57-67.The pentamethyldisilanyl-substituted cyclopentadienes Me(n)C(5)H(6-n-m)(Si(2)Me(5))(m) (for n = 0: 1 (m = 1), 2 (m = 2), 3 (m = 3), 4 (m = 4); for n = 1: 5 (m = 1), 7 (m = 2), 9 (m = 3); for n = 3: 13 (m = 1), 14 (m = 2); for n = 4: 15 (m = I)) are accessible in good yields by treatment of the corresponding cyclopentadienyllithium compounds with Me(5)Si(2)Cl. The mono-Me(5)Si(2)-substituted species 1 and 5 are present only to a small extend in form of vinylic isomers and to a greater extend as isomers with the Me(5)Si(2)-group in allylic position; the latter possess a dynamic structure due to sigmatropic rearrangements. In the twice-Me(5)Si(2)-substituted cyclopentadienes 2 and 7, the 5,5 and 2,5 isomers are observed, which can be interconverted by silatropic shifts; in addition, the presence of two vinylic isomers can be proved in the case of 2. In the cyclopentadiene species 3 and 9 with three Me(5)Si(2) groups, only the 2,5,5 isomers can be detected by NMR spectroscopy. Compound 3 possesses a fluxional structure and can thus be deprotonated. On the other hand, 9 does not show a fluxional behaviour and thus cannot be deprotonated. The cyclopentadiene 4 with four Me(5)Si(2) substituents possesses a static structure and cannot be deprotonated. The 2,3,5,5 position of the substituents is proved by an X-ray crystal structure analysis. Only two Me(5)Si(2) groups can be incorporated in the carbon skeleton of 1,2,4-trimethylcyclopentadiene, whereby compounds of the type 1,2,4-Me(3)C(5)H(3-n)(Si(2)Me(5))(n) (13: n = 1; 14: n = 2) are formed. Surprisingly, 14 cannot be deprotonated with (n)BuLi and KH, respectively. The reaction of Me(4)C(5)HLi with Me(5)Si(2)Cl leads to the cyclopentadiene Me(4)C(5)HSi(2)Me(5) (15). Though compound 15 can be deprotonated, further reaction of the resulting anion with Me(5)Si(2)Cl does not lead to the expected cyclopentadiene Me(4)C(5)(Si(2)Me(5))(2) (16). On the other hand, 16 can be prepared by metallation of 14 with C8K and further reaction with CH3I. In contrast to 14, compound 4 cannot be deprotonated with C8K; the reaction of 4 with C8K and CH3I leads to 9 via Si-C bond splitting. The pentamethyldisilanyl-substituted pentamethylcyclopentadiene Me(5)C(5)Si(2)Me(5) (17) is obtained by reaction of Me(5)C(5)K with Me(5)Si(2)Cl; compound 17 shows dynamic behaviour; the migration of the Me(5)Si(2) group is slower than that of the Me(3)Si group in Me(5)C(5)SiMe(3). Three ElMe(3) groups can be introduced stepwise into the 1,2,4-Me(3)C(5)H(3) molecule, as demonstrated by the exemplary synthesis of the cyclopentadienes 1,2,4-Me(3)C(5)H(3-n)(SiMe(3))(n) (10: n = 1; 11: n = 2) and 1,2,4-Me(3)C(5)(SiMe(3))(2)SnMe(3) (12).Die Si2Me5-substituierten Cyclopentadiene MenC5H6-n-m(Si2Me5)m (fĂŒr n = 0: 1 (m = 1), 2 (m = 2), 3 (m = 3), 4 (m = 4); fĂŒr n = 1: 5 (m = 1), 7 (m = 2), 9 (m = 3); fĂŒr n = 3: 13 (m = 1), 14 (m = 2); fĂŒr n = 4: 15 (m = 1)) sind durch Umsetzung der entsprechenden Cyclopentadienyl-Lithium-Verbindung mit Me5Si2Cl in guten Ausbeuten zugĂ€nglich. In den einfach Si2Me5-substituierten Systemen 1 und 5 findet man zu einem geringen Anteil Isomere mit vinylstĂ€ndiger Si2Me5-Gruppe und zu einem ĂŒberwiegenden Anteil das Isomer mit allylstĂ€ndiger Si2Me5-Gruppe, welches aufgrund von sigmatropen Umlagerungen eine dynamische Struktur besitzt. In den zweifach Si2Me5- substituierten Cyclopentadienen 2 und 7 beobachtet man die jeweiligen 5,5- und 2,5-Isomere, welche durch Silatropie miteinander im Gleichgewicht stehen; zusĂ€tzlich lassen sich in 2 noch zwei Isomere mit ausschließlich vinylstĂ€ndigen Substituenten nachweisen. In den dreifach Si2Me5-substituierten Systemen 3 und 9 ist nur das 2,5,5-Isomere nachweisbar. 3 besitzt eine dynamische Struktur und ist deshalb deprotonierbar. 9 hingegen ist nicht dynamisch und aufgrund des Fehlens einer Allyl-H-Funktion nicht deprotonierbar. Auch das vierfach Si2Me5-substituierte Cyclopentadien 4 zeigt keine MolekĂŒldynamik und kann nicht deprotoniert werden; die 2,3,5,5-Anordnung der Substituenten in 4 wird anhand einer Röntgenstrukturanalyse belegt. Im 1,2,4-Trimethylcyclopentadien gelingt jedoch nur die EinfĂŒhrung von zwei Si2Me5-Gruppen, wobei die Verbindungen des Typs 1,2,4-Me3C5H3-n(Si2Me5)n (13: n = 1; 14: n = 2) entstehen. Überraschenderweise ist 14 mit nBuLi oder KH nicht deprotonierbar. Die Umsetzung von Me4C5HLi mit Me5Si2Cl fĂŒhrtzum Cyclopentadien Me4C5HSi2Me5 (15). Obwohl 15 deprotonierbar ist, gelingt durch Umsetzung des Anions mit Me5Si2Cl die Synthese von Me4C5(Si2Me5)2 (16) nicht. Verbindung 16 lĂ€ĂŸt sich allerdings durch Metallierung von 14 mit C8K und anschließende Umsetzung mit CH3I darstellen. Im Gegensatz dazu kann 4 mit C8K nicht deprotoniert werden; die Umsetzung mit C8K und CH3I lĂ€uft ĂŒber Si-C-Bindungsspaltung zu 9. Das Cyclopentadienyldisilan Me5C5Si2Me5 (17) erhĂ€lt man durch Umsetzung von Me5C5K mit Me5Si2Cl; 17 zeigt dynamisches Verhalten, die Wanderungsgeschwindigkeit der Si2Me5-Gruppe ist geringer als die der SiMe3-Gruppe im Cyclopentadienylsilan Me5C5SiMe3. Im Cyclopentadien 1,2,4-Me3C5H3 lassen sich sukzessiv drei ElMe3-Gruppen (El = Si, Sn) einfĂŒhren, wie durch die beispielhafte Synthese von 1,2,4-Me3C5H3-n(SiMe3)n (10: n = 1, 11: n = 2) und 1,2,4-Me3 C5(SiMe3)2SnMe3 (12) gezeigt wird

    Quantifying the uncertainties of transpiration calculations with the Penman-Monteith equation under different climate and optimum water supply conditions

    Get PDF
    The uncertainties of transpiration calculations with the Penman-Monteith equation were quantified under different climate conditions of Brazil, Germany and Israel using maize as a common crop type. All experiments were carried out under non-limiting growing conditions. Canopy resistance was determined by scaling to canopy level specific relations between in situ measurements of incident radiation and stomatal conductance using a light penetration model. The model was tested against heat-pulse measured sap flow in plant stems. The root mean square error (RMSE) of daily calculated transpiration minus measured sap flow was 0.4 mm/day. It was dominated by its variance component (variance = 0.2 {min/day}(2); bias = 0.0 mm/day). Calculated transpiration closely matched the measured trends at the three locations. No significant differences were found between seasons and locations. Uncertainties of canopy conductance parameterizations led to errors of up to 2.1 mm/day. The model responded most sensitively to a 30% change of net radiation (absolute bias error = 1.6 mm/day), followed by corresponding alterations of canopy resistances (0.8 mm/day), vapour pressure deficits (0.5 mm/clay) and aerodynamic resistances (0.34 mm/day). Measured and calculated 30-min or hourly averaged transpiration rates are highly correlated (r(2) = 0.95; n = 10634), and the slope of the regression line is close to unity. The overall RMSE of calculated transpiration minus measured sap flow was 0.08 mm/h and was dominated by its variance component (0.005 {mm/h}(2)). Measured sap flow consistently lagged behind calculated transpiration, because plant hydraulic capacitance delays the change of leaf water potential that drives water uptake. Calculated transpiration significantly overestimated sap flow during morning hours (mean = 0.068 mm/h, n = 321) and underestimated it during afternoon hours (mean = -0.065 mm/h; n = 316). The Penman-Monteith approach as implemented in the present study is sufficiently sensitive to detect small differences between transpiration and water uptake and provides a robust tool to manage plant water supply under unstressed conditions. (C) 2009 Elsevier B.V. All rights reserved

    Dimorphos's Orbit Period Change and Attitude Perturbation due to Its Reshaping after the DART Impact

    Get PDF
    On 2022 September 26 (UTC), NASA's Double Asteroid Redirection Test (DART) mission achieved a successful impact on Dimorphos, the secondary component of the near-Earth binary asteroid system (65803) Didymos. Subsequent ground-based observations suggest a significant reshaping of Dimorphos, with its equatorial axis ratio changing from 1.06 to ∌1.3. Here we report the effects of this reshaping event on Dimorphos's orbit and attitude. Given the reported reshaping magnitude, our mutual dynamics simulations show that approximately 125 s of the observed 33 minute orbit period change after the DART impact may have resulted from reshaping. This value, however, is sensitive to the precise values of Dimorphos's post-impact axis ratios and may vary by up to 2 times that amount, reaching approximately 250 s within the current uncertainty range. While the rotational state of the body is stable at the currently estimated axis ratios, even minor changes in these ratios or the introduction of shape asymmetry can render its attitude unstable. The perturbation to Dimorphos's orbital and rotational state delivered by the impact directly, combined with any reshaping, leads to a strong possibility for a tumbling rotation state. To accurately determine the momentum enhancement factor (ÎČ) through measurements by the European Space Agency's Hera spacecraft and to evaluate the effectiveness of the kinetic deflection technique for future planetary defense initiatives, the effects of reshaping should not be overlooked.This work was supported in part by the DART mission, NASA contract 80MSFC20D0004 to JHU/APL. R.N. acknowledges support from NASA/FINESST (NNH20ZDA001N). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project number 200021_207359). P.M. acknowledges funding support from the French Space Agency CNES and The University of Tokyo. P.P. acknowledges support from the grant Agency of the Czech Republic, grant 23-04946S. S.R.S. acknowledges support from the DART Participating Scientist Program, grant No. 80NSSC22K0318. A.C.B. and P.Y.L. acknowledge funding by the NEO-MAPP project 717 GA 870377, EC H2020-SPACE-718 2018-2020/H2020-SPACE-2019, and by MICINN (Spain) PGC2021, PID2021-125883NB-C21. P.Y.L. acknowledges funding from the European Space Agency OSIP contract N.4000136043/21/NL/GLC/my. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (No. 80NM0018D0004)

    Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, ÎČ, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense

    Synthese, Reaktionen und Struktur von Tricarbonyl(1R,1R',2,3,4,5-Tetraphenyl-1-Germacyclopentadien) Eisen-Komplexen

    Get PDF
    Die Tricarbonyl(germacy~lopentadien)eisen-Komplexe VI-X werden durch Umsetzung der Germacyclopentadiene I-V niit Fe(CO)5_5 dargestellt. In l,l-Dialkyl- und -Diaryl-l-gemiacyclopentadien-Komplexen kann die Ge-C( exo )-Bindung durch verschiedene Elementhaloge~de gespalten werden, wobei die I-Halogen-l-germacyclopentadien-Komplexe XII, XIII, XV-XVII gebildet werden. Eine Entkomplexierung des Komplexes XI tritt bei der Reaktion mit Me3_3NO oder TiCl4_4 ein. Das Tricarbonyl(l-chlor-l-germacyclopentadien)eisen XII reagiert mit AgF, NaJ, NaOMe und LiAIH4_4 zu den Komplexen XIXXXII. Das German XXII kann mit CCl_4)\ in XII ĂŒberfĂŒhrt werden. Die Tricarbonyleisen-Komplexe XI, XII, XVI, XVII und XIX reagieren photochemisch mit Trimethylphosphan zu den Dicarbonyl(trimethylphosphan)-Komplexen XXIII-XXVII. Die Kristallstruktur des Tricarbonyl(l-exo-fluor-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen wird beschrieben.The tricarbonyl(germacyclopentadiene)iron complexes VI-X are synthesized by the reaction of the germacyclopentadienes I-V with Fe(CO)\(_5. In l,l-dialkyl- and -diaryi-l-germacyclopentadiene complexes the Ge-C(exo) bond can be split by different element halides, whereby the I-halo-l-germacyclopentadiene complexes XII. XIII. XV-XVII are formed. Decomplexation takes place by the reaction of complex XI with Me3_3NO or TiCl4_4. Tricarbonyl(l-chloro-1-germacyclopentadiene)iron (XII) reacts with AgF. NaI. NaOMe and LiAIH4_4 to the complexes XIX-XXII. The germane XXII can be transferred to XII with CCl\(_4)\. The tricarbonyliron complexes XI. XII. XVI. XVII and XIX react photochemicaIly with trimethylphosphane to the dicarbonyl(trimethylphosphane) complexes XXIII-XXVll. The crystal structure of tricarbonyl(1-exo-fluoro-l-endo-methyl-2,3,4,5-tetraphenyl-l-germacyclopentadiene) iron is described

    Low-Valent Silicon in Formally Antiaromatic Four-Membered Ring Systems

    No full text
    Jutzi P. Low-Valent Silicon in Formally Antiaromatic Four-Membered Ring Systems. Angewandte Chemie International Edition. 2011;50(39):9020-9022
    • 

    corecore