71 research outputs found
The identification of established modifiable mid-life risk factors for cardiovascular disease which contribute to cognitive decline: Korean Longitudinal Study of Aging (KLoSA)
INTRODUCTION: We explored how different chronic diseases, risk factors, and protective factors highly associated with cardiovascular diseases (CVD) are associated with dementia or Mild Cognitive Impairment (MCI) in Korean elders, with a focus on those that manifest in mid-life. METHODS: A CVD-free cohort (n = 4289) from the Korean Longitudinal Study of Aging was selected to perform Cox mixed-effects proportional hazard regressions. Eighteen control variables with strong associations to CVD were chosen as explanatory variables, and Mini-Mental State Examination (MMSE) score cut-off for dementia and MCI were used as outcome variables. RESULTS: The statistically significant (P < 0.05) adverse factors that contribute in developing dementia were age (aHR 1.07, 1.05-1.09), Centre for Epidemiological Studies Depression Scale (CESD-10) (aHR 1.17, 1.12-1.23), diagnosis with cerebrovascular disease (aHR 3.73, 1.81-7.66), living with diabetes (aHR 2.30, 1.22-4.35), and living with high blood pressure (HBP) (aHR 2.05, 1.09-3.87). In contrast, the statistically significant protective factors against developing dementia were current alcohol consumption (aHR 0.67, 0.46-0.99), higher educational attainment (aHR 0.36, 0.26-0.56), and regular exercise (aHR 0.37, 0.26-0.51). The factors with a statistically significant adverse association with progression to MCI were age (aHR 1.02, 1.01-1.03) and CESD-10 (aHR 1.17, 1.14-1.19). In contrast, the statistically significant protective factors against developing MCI were BMI (aHR 0.96, 0.94-0.98), higher educational attainment (aHR 0.33, 0.26-0.43), and regular exercise (aHR 0.83, 0.74-0.92). CONCLUSION: In lieu of the protective factor of MCI and dementia, implementing regular exercise routine well before mid-life and cognitive decline is significant, with adjustments made for those suffering from health conditions, so they can continue exercising despite their morbidity. Further attention in diabetes care and management is needed for patients who already show decline in cognitive ability as it is likely that their MCI impacts their ability to manage their existing chronic conditions, which may adversely affect their cognitive ability furthermore
CD11b+, Ly6G+ Cells Produce Type I Interferon and Exhibit Tissue Protective Properties Following Peripheral Virus Infection
The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b+Ly6C+Ly6G- monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b+Ly6C+Ly6G+ cells. The phenotype of the CD11b+Ly6C+Ly6G+ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b+Ly6C+Ly6G+ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b+Ly6C+Ly6G+ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G+ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b+Ly6C+Ly6G+ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction
Decay spectroscopy at the two-proton drip line: radioactivity of the new nuclides 160Os and 156W
The radioactivity of 76160Os84 and 74156W82 that lie at the two-proton drip line have been measured in an experiment performed at the Accelerator Laboratory of the University of Jyväskylä. The 160Os nuclei were produced using fusion-evaporation reactions induced by a beam of 310 MeV 58Ni ions bombarding a 106Cd target. The 160Os ions were separated in flight using the recoil separator MARA and implanted into a double-sided silicon strip detector, which was used to measure their decays. The α decays of the ground state of 160Os (Eα = 7092(15) keV, t1/2 = 97−32+97 μs) and its isomeric state (Eα = 8890(10) keV, t1/2 = 41−9+15 μs) were measured, allowing the excitation energy of the isomer to be determined as 1844(18) keV. These α-decay properties and the excitation energy of the isomer are compared with systematics. The α decays were correlated with subsequent decays to investigate the β decays of the ground state of 156W, revealing that unlike its isotones, both low-lying isomers were populated in its daughter nuclide, 156Ta. An improved value for the half-life of the proton-decaying high-spin isomeric state in 73156Ta83 of 333−22+25 ms was obtained in a separate experiment using the same experimental systems with a 102Pd target. This result was employed to improve the precision of the half-life determined for 156W, which was measured as 157−34+57 ms
- …