343 research outputs found

    Ionic Liquid Electrolytes for Metal-Air Batteries: Interactions between O2, Zn2+ and H2O Impurities

    Get PDF
    Motivated by the potential of ionic liquids (ILs) to replace traditional aqueous electrolytes in Zn-air batteries, we investigated the effects arising from mutual interactions between O₂ and Zn(TFSI)₂ as well as the influence of H₂O impurities in the oxygen reduction/oxygen evolution reaction (ORR/OER) and in Zn deposition/dissolution on a glassy carbon (GC) electrode in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (BMP-TFSI) by differential electrochemical mass spectrometry. This allowed us to determine the number of electrons transferred per reduced/evolved O₂ molecule. In O₂ saturated neat BMP-TFSI the ORR and OER were found to be reversible, in Zn²⁺containing IL Zn deposition/stripping proceeds reversibly as well. Simultaneous addition of O₂ and Zn²⁺ suppresses Zn metal deposition, instead ZnO₂ is formed in the ORR, which is reversible only after excursions to very negative potentials (−1.4 V). The addition of water leads to an enhancement of all processes described above, which is at least partly explained by a higher mobility of O₂ and Zn²⁺ in the water containing electrolytes. Consequences for the operation of Zn-air batteries in these electrolytes are discussed

    Zinc‐Ion Hybrid Supercapacitors Employing Acetate‐Based Water‐in‐Salt Electrolytes

    Get PDF
    Halide-free, water-in-salt electrolytes (WiSEs) composed of potassium acetate (KAc) and zinc acetate (ZnAc2_2) are investigated as electrolytes in zinc-ion hybrid supercapacitors (ZHSs). Molecular dynamics simulations demonstrate that water molecules are mostly non-interacting with each other in the highly concentrated WiSEs, while “bulk-like water” regions are present in the dilute electrolyte. Among the various concentrated electrolytes investigated, the 30 m KAc and 1 m ZnAc2_2 electrolyte (30K1Zn) grants the best performance in terms of reversibility and stability of Zn plating/stripping while the less concentrated electrolyte cannot suppress corrosion of Zn and hydrogen evolution. The ZHSs utilizing 30K1Zn, in combination with a commercial activated carbon (AC) positive electrode and Zn as the negative electrode, deliver a capacity of 65 mAh g1^{−1} (based on the AC weight) at a current density of 5 A g1^{−1}. They also offer an excellent capacity retention over 10 000 cycles and an impressive coulombic efficiency (≈100%)

    Experimental and numerical model study of the limiting current in a channel flow cell with a circular electrode

    Get PDF
    We describe first measurement in a novel thin-layer channel flow cell designed for the investigation of heterogeneous electrocatalysis on porous catalysts. For the interpretation of the measurements, a macroscopic model for coupled species transport and reaction, which can be solved numerically, is feasible. In this paper, we focus on the limiting current. We compare numerical solutions of a macroscopic model to a generalization of a Leveque-type asymptotic estimate for circular electrodes, and to measurements obtained in the aforementioned flow cell. We establish, that on properly aligned meshes, the numerical method reproduces the asymptotic estimate. Furthermore, we demonstrate, that the measurements are partially performed in the sub-asymptotic regime, in which the boundary layer thickness exceeds the cell height. Using the inlet concentration and the diffusion coefficient from literature, we overestimate the limiting current. On the other hand, the use of fitted parameters leads to perfect agreement between model and experiment

    The role of reactive reaction intermediates in two-step heterogeneous electro-catalytic reactions: A model study

    Get PDF
    Experimental investigations of heterogeneous electrocatalytic reactions have been performed in flow cells which provide an environment with controlled parameters. Measurements of the oxygen reduction reaction in a flow cell with an electrode consisting of an array of Pt nanodisks on a glassy carbon substrate exhibited a decreasing fraction of the intermediate H2O2H_2O_2 in the overall reaction products with increasing density of the nanodiscs. A similar result is true for the dependence on the catalyst loading in the case of a supported Pt/C catalyst thin-film electrode, where the fraction of the intermediate decreases with increasing catalyst loading. Similar effects have been detected for the methanol oxidation. We present a model of multistep heterogeneous electrocatalytic oxidation and reduction reactions based on an adsorption-reaction-desorption scheme using the Langmuir assumption and macroscopic transport equations. A continuum based model problem in a vertical cross section of a rectangular flow cell is proposed in order to explain basic principles of the experimental situation. It includes three model species A, B, C, which undergo adsorption and desorption at a catalyst surface, as well as adsorbate reactions from A to B to C. These surface reactions are coupled with diffusion and advection in the Hagen Poiseuille flow in the flow chamber of the cell. Both high velocity asymptotic theory and a finite volume numerical are used to obtain approximate solutions to the model. Both approaches show a behaviour similar to the experimentally observed. Working in more general situations, the finite volume scheme was applied to a catalyst layer consisting of a number of small catalytically active areas corresponding to nanodisks. Good qualitative agreement with the experimental findings was established for this case as well

    Differential Electrochemical Mass Spectrometry of Carbon Felt Electrodes for Vanadium Redox Flow Batteries

    Get PDF
    We successfully conducted electrochemical and online mass spectrometric measurements on commercial carbon felt electrodes with a differential electrochemical spectrometry setup. Its capability is demonstrated by simultaneous mass spectrometric and electrochemical measurements. Half-cell tests, such as cyclic voltammetry, and coulometry of the redox couples can be performed under stopped flow of the electrolyte. We use different potential windows, and two types of electrolytes while monitoring potential dependent H2, O2 and CO2 formation. At oxidizing potentials, we did not observe oxygen evolution, only carbon corrosion. An increase in CO2 and H2 formation at high and low potentials in the presence of vanadium is observed
    corecore