2,232 research outputs found

    Revised Perturbation Statistics for the Global Scale Atmospheric Model

    Get PDF
    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees

    Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    Get PDF
    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented

    The GRAM-3 model

    Get PDF
    The Global Reference Atmosphere Model (GRAM) is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data. An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer then 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model

    Improvements in the perturbation simulations of the global reference atmospheric model

    Get PDF
    The Global Reference Atmospheric Model (GRAM) program includes the capability for simulating pseudo-random perturbations in density, temperature, pressure, or wind components along a simulated reentry trajectory or other path through the atmosphere. Some concerns were expressed by GRAM users, however, that the mean-square perturbation gradients may be too large for small values of the vertical separation Delta z. The present GRAM perturbation simulations, based on a one-step autoregressive model, yield a power spectrum versus wavenumber k which is proportional to k sup -2 at high wavenumbers. This feature also produces mean-square perturbation differences which are directly proportional to Delta z, and mean-square perturbation gradients which are inversely proportional to Delta z. Thus, root-mean-square gradients, (Delta f/Delta z) sub rms, increase with decreasing Delta a as Delta z sup -1/2. A simple modification to GRAM is suggested which overcomes this problem, i.e., which produce root-mean-square gradient that remain bound as Delta z approaches zero. Possible applications of more sophisticated simulation approaches, e.g., second order autoregressive models, or fractal model techniques, were also explored briefly but found to yield improvements which appear too small to justify their considerable added complexity for use in the GRAM programs

    Research study on neutral thermodynamic atmospheric model

    Get PDF
    The Global Reference Atmospheric Model is used along with the revised perturbation statistics to evaluate and computer graph various atmospheric statistics along a space shuttle reference mission and abort trajectory. The trajectory plots are height vs. ground range, with height from ground level to 155 km and ground range along the reentry trajectory. Cross sectional plots, height vs. latitude or longitude, are also generated for 80 deg longitude, with heights from 30 km to 90 km and latitude from -90 deg to +90 deg, and for 45 deg latitude, with heights from 30 km to 90 km and longitudes from 180 deg E to 180 deg W. The variables plotted are monthly average pressure, density, temperature, wind components, and wind speed and standard deviations and 99th inter-percentile range for each of these variables

    The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    Get PDF
    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented

    New Atmospheric Turbulence Model for Shuttle Applications

    Get PDF
    An updated NASA atmospheric turbulence model, from 0 to 200 km altitude, which was developed to be more realistic and less conservative when applied to space shuttle reentry engineering simulation studies involving control system fuel expenditures is presented. The prior model used extreme turbulence (3 sigma) for all altitudes, whereas in reality severe turbulence is patchy within quiescent atmospheric zones. The updated turublence model presented is designed to be more realistic. The prior turbulence statistics (sigma and L) were updated and were modeled accordingly

    Four-D global reference atmosphere technical description, part 1

    Get PDF
    An empirical atmospheric model was developed which generates values for pressure, density, temperature, and winds from surface levels to orbital altitudes. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means; (2) quasi-biennial oscillations; and (3) random perturbations to simulate partially the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined from various empirical studies and are added to the monthly mean values. This model has been developed as a computer program called PROFILE which can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The PROFILE program was developed for design applications in the space shuttle program. Other applications of the model are discussed, such as for global circulation and diffusion studies, and for generating profiles for comparison with other atmospheric measurement techniques, (e.g. satellite measured temperature profiles)

    Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    Get PDF
    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99
    corecore