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Abstract 

The Global Reference Atmospheric Model (GRAM) program includes the 

capability for simulating pseudo-random perturbations in density, temperature, 

pressure, or wind components along a simulated reentry trajectory or other path 

through the atmosphere (e.g. a vertical profile). Some concerns have been 

expressed by GRAM users, however, that mean-square perturbation gradients [e.g. 

< ( A f / A z )  > for any perturbation parameter f] may be too large for small values 

of vertical separation A z .  The present GRAM perturbation simulations, based on 

a one-step autoregressive model [AR(l)], yield a power spectrum versus 
- 2  wavenumber k which is proportional to k at high wavenumbers. This feature 

also produces mean-square perturbation differences [e.g. < ( A f )  > ]  which are 
directly proportional to Az, and mean-square perturbation gradients which are 

inversely proportional to Az. Thus, root-mean-square gradients, (nf/Azjrms, 

increase with decreasing A z  as A z  -1’2. This report suggests simple 

modifications to GRAM (e.g. changes in the form of the autoregressive 

correlation function used) which overcome this problem, i.e. which produce root- 

mean-square gradients that remain bounded as A z  approaches zero. Possible 

applications of more sophisticated simulation approaches, e.g. second order 

autoregressive models [AR(2)], or fractal model techniques, were also explored 

briefly but found to yield improvements which appear to be too small to justify 

their considerable added complexity for use in the GRAM program. 
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INTRODUCTION AND BACKGROUND 

Figure 1 illustrates an application of the present GRAM perturbation model 
in simulating vertical density gradients for vertical profiles. Vertical steps 

of 2 km or 0.25 km were used. Larger density gradient (Af/Az) values are 

evident with the 0.25 km spacing. 
The random perturbation model in GRAM is basically a simple Markov process, 

i.e. one which uses a scalar factor, rather than a transition probability 

matrix, to relate the current perturbation value to the previous perturbation 

value. In the notation of time series (Box-Jenkins) models (see, for example, 
Vandaele, 1983), the GRAM perturbation model is a first-order autoregressive 

-Ar/L model, or AR(1) model, with an exponential correlation function p ( A r )  = e 8 

for spatial separation Ar. L is the integral scale of the correlation function 
p ( A r ) ,  that is; 

Spectra consistent with this correlation function would be of the form 

(Lumley and Panofsky, 1964) 

(2) 
2 2 2  kF(k)/a = (kL/x)/(l + k L ) 

for scalar quantities (density, temperature, etc.) and for the longitudinal 

spectra of vector quantities (wind components). For the transverse spectra of 

vector components, the spectrum would be 

(3) 
2 2 2  kF(k)/02 - (kL/2~)(1 + 3k2L2)/(1 + k L ) . 

-2 Both of these spectra vary as F(k) 0: k at large values of k (kL >> l), i.e., 

for small scales of separation. The spectral forms are widely used in 

turbulence simulations, where they are referred to as the Dryden spectrum (see, 

for example, Fichtl, 1977, or Turner and Hill, 1982). 

Figure 2 shows a comparison between the vertical spectrum of horizontal 

wind (equation 3) evaluated from the GRAM perturbation model and spectra 

presented recently by Van Zandt (1985). For wavelengths less than about 1 km 
(wave numbers greater than 10 cycles/m) the observed spectra are consistent 

with F(k) a k-3, a characteristic of the spectrum of a saturated field of 
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gravity waves (Smith et al., 1987) .  

The form of the exponential correlation (and its associated Dryden spectral 

form) were originally selected for GRAM from studies of vertical structure 

function (and a limited amount of horizontal structure function) data. Examples 

of these earlier results (Justus and Woodrum, 1972) are shown in Figure 3 .  For 

vertical displacement, Az, the AR(1) model used in the GRAM perturbation routine 
produces a structure function which is given by (Justus et al., 1986) 

( 4 )  
2 2 2 a f  > = <[f(z+Az)-f(z)] > E 2 of[1 - ~(Az)] , 

where o is the standard deviation of the perturbation values. As shown by 

Figure 3 ,  the structure function model provided by use of the exponential 
correlation [p(Ar) - exp(-Ar/L)] in equation ( 4 )  yields a good fit to the 

observed mean-square vertical differences, at least for vertical separations of 

lkm or larger. Structure function values of vertical separations of less than 1 

km are limited by lack of vertical resolution of the Meteorological Rocket 

Network sensors. 

f 

For vertical displacement, Az, the AR(1) model used in the GRAM perturba- 
tion routine produces rms gradients which, from equation ( 4 ) ,  are given by 

- ~(Az)] )1/2/Az (5) 

For the exponential correlation function, and Az/L << 1, equation (5) can be 

approximated as 

Thus, as the vertical step Az is decreased in the AR(1) simulation, the rms 

perturbation (density or other parameter) gradient will increase inversely as 

the square root of Az. This is the phenomenon illustrated in Figure 1. 
Comparison of the spectra in Figure 2 and the structure function data in 

Figure 3 suggests that, if the vertical spacing is 1 km or greater the 

perturbation results will be consistent with observed spectral magnitudes and 

gradients. However, the fact that the model spectrum oc k versus the observed 

spectrum a k for large k (small displacement) suggests that unrealistic 

gradients spectral magnitudes might result for vertical separation of less 

- 2  
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than 1 km. For this reason it has been recommended (Justus, et al., 1986) that 

simulations be done using GRAM with a minimum vertical spacing of 1 km. The 
results of the research reported here are intended to improve the perturbation 

simulations with GRAM in such a way as to allow this restriction to be relaxed. 

METHODS EXAMINED FOR REVISED GRAt4 PERTURBATION SIMULATION 

The correlation function p(Ar) enters into the simulation of any 

perturbation function f(r)  [with mean = 0 and standard deviation = a ] via the 
relation for the first-order autoregressive, AR(1), model (Vandaele, 1983) 

f 

f(r) = p(Ar) f(r-Ar) + a f [l-p2(Ar)l1I2a(r) , (7) 

where a(r> is a random variable with mean - 0 and variance = 1, and Ar is the 

step size in successive positions. The AR(1) model produces a statistically 

stationary series of values for f(r) only if p(n Ar) - p (Ar), that is, if p(Ar) 

is the exponential function p(Ar) = e -‘‘IL (Vandaele, 1983; Chapter 4). If the 

condition of statistical stationarity is relaxed, by using a correlation 

function other than e -Ar/L, then equation ( 6 )  will not produce the desired 

standard deviation (a,) for a series of simulated values of f(r) [see, for 

example, Figure 4, which shows the results of using a Gaussian correlation in 

the AR(1) model, and for which the values of the computed standard deviation and 

gradients are too small at the smaller vertical separation of 0.25 km]. 

However, it is the exponential correlation function which imposes the k large- 

wavenumber spectrum [equations (2) and (3)] and the rms-perturbation gradients 

which become too large as the separation Ar gets small [equation (6)]. 

n 

-2 

In order to remedy this situation, one approach examined was the use of a 

modified correlation function which yields bounded values of rms gradients when 

Ar is small, hopefully without significant adverse impact on the statistical 

stationarity and the estimation of the proper variance for the f(r) series. If 

the leading terms in the expansion of p(Ar) are quadratic in Ar, rather than 

linear in Ar as for the exponential correlation, then equation (5) would yield 

rms perturbations which approach a constant value as Ar approaches zero. 

Candidate modifications for the exponential correlation function examined 

include the Gaussian [p(Ar) - exp(-x Ar /4L )], the parabolic [p(Ar) = 1 - 
(2 Ar/3L) for Ars3L/2; p(Ar) - 0 for Ar>3L/2], and the modified exponential 

2 2  

2 

z [p(Ar) - 1 - a(Ar/L) up to some small value of Ar and p(Ar) - exp(-b Ar/L) for 
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larger values of Ar, with factors a and b determined from continuity of p(Ar) at 

the transition value and the integral scale condition, equation (l)]. Other 

candidate correlation functions examined were sin(~Ax/2L)/(~Ax/2L) and (1 + 
2Ax/L)exp(-2Ax/L). 

Another approach examined was the suitability of using a two-step 

autoregressive model, AR(2). For this model, Vandaele (1983) gives the relation 

where p is the one-step autocorrelation function value, p2 is the two-step 

autocorrelation, and the coefficients 4 and 4 are given by 
1 

1 2 

The only restrictions on the correlation function p(Ar) [and the one-step and 

two values, p1 and p 2 ,  it yields] are that, for statistical stationarity, 

it is necessary that 4 +4 <1, 4 - 4  <1, and 14,1<1 (Vandaele, 1983; Chapter 4). 

By using equations ( 8 ) ,  we see that all three of these conditions are met if p n  

step 

1 2  2 1  
L 

2 2 
1 1 2 1' is greater than p or if p2 satisfies the relation 2 p  - l < p  <p2 The AR(2) model 

will thus be stationary for any correlation function which meets these 

conditions. If the correlation function violates the statistical stationarity 

constraint in the AR(2) model, then the term inside the square root in equation 

(8) becomes negative, and no simulations can be calculated by this method. If 
p2 is equal to p1 2 then the correlation function is exponential [p(Ar)=e - Ar/L 1 
and equations (9) reduce to 4 =p and d2=0. Thus, the AR(2) model becomes the 1 1  
same as the AR(1) model if the autocorrelation function is exponential. 

Another method examined for the perturbation simulations is a fractal 

simulation technique. For the fractal approach, a series of values for 

perturbations f(r) can be simulated (Carpenter, 1980) by 

f(r) = [f(r+Ar) + f(r-Ar)]/2 + (c (T Ar/L) a(r) , (10) 

where c is a constant (the "roughness factor"), and Ar is at first some large 

separation which is then successively reduced in a "recursive midpoint 
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reduction" process. The advantage of the fractal technique is that it can be 

designed to "mimic" natural curves and fluctuations quite closely. The 

disadvantage, in terms of application in GRAM, is that fractal simulation via 

equation (10) requires a "look-ahead" approach (to evaluate the f(r+Ar) values), 

rather than using only one time step in the "past", as in the current AR(1) 

model. 

RESULTS OF THE STUDY 

For study of the various candidate correlation functions, a set of 10 
series simulations of the equivalent of 100 km were done with vertical steps 
between data points of 2, 1, 0.8, 0.6, 0.4 and 0.2 km. For this test a constant 

value of the integral scale L was taken to be 10 km [the GRAM model actually 

iises helght-dependent scale ~ a l u e s  zr?d emplnys a twn-scale model for large-scale 

and small-scale fluctuations (Justus, et al., 1980)l. The AR(1) model of 

equation (6) and the AR(2) model of equation (7)  were both evaluated for each of 

the candidate correlation functions. The fractal model of equation ( 8 )  was also 

examined for a single selected value of the roughness factor c. 

The correlation models used, introduced above were: 

0 the exponential, p(Ar) = exp(-Ar/L), 

Ar/L I 0.05 

Ar/L > 0.05 

2 
0 the modified exponential, p(Ar) - 1 - a(Ar/L) 

p(Ar) - exp( -bAr/L) 
with a - 19.51615854016301 and 

b = 1.00041693941245578, 

2 2  
0 the Gaussian, p(Ar) - exp(-.rr Ar /4L ) ,  

Ar/L I 1.5 2 
0 the parabolic, p(Ar) = 1 - (2  Ar/3L) 

p(Ar) = 0 Ar/L > 1.5, 

p(Ar) - sin(kAr)/(kAr), with k = m/2L, and 

0 p(Ar) = (l+mAr)exp(-mAr), with m = 2/L. 

Averages and standard deviations about the averages of the ten trials are 
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shown in Table 1, for the observed standard deviation a ( f )  of the simulation 

series, and for the rms gradient value df/dr - (Af/Az)rms. The input value for 

o(f) was 10% in each case, so the expected average value a(f) should be 10% for 
simulation series which are statistically stationary. Of course, as discussed 

above, only the exponential correlation p(Ar) = exp(-Ar/L) is expected to yield 

statistically stationary results for the first order AR(1) model. 

The expected values of the rms gradient df/dr, evaluated by equation (5) 

are given for comparison in Table 2. All correlation functions in both the 

AR(1) and AR(2) models are seen to yield df/dr values close to that expected. 

All of the simulation approaches with all candidate correlation functions except 
the modified exponential are seen to yield df/dr values which are considerably 

below that for the present exponential correlation function, even at vertical 

separations larger than 1 km, where the exponential correlation is considered to 
J A G L u  -r -1 rl ObbuLocc on....rnte %-c.c... L-YUICL. 1 t c  O n l - r  3 the ECdifiPd expcnential cerrelatior? f12nctinn 

yields values of df/dr which are consistent with the exponential correlation 

results at separations larger than 1 km. The low value of df/dr for the fractal 

simulations could, of course, be increased by using a larger value for the 

roughness factor, c, than the one selected. However, the practical difficulties 

of implementing the fractal approach in the GRAM program, mentioned above, 

essentially rule out its possible application. 

The results of Table 1 also show that: 

0 The Gaussian, parabolic, sin(kAr)/(kAr), and (l+mAr)exp(-mAr) correlation 

functions produce o(f) values which are too low, because of the statistical 

non-stationarity, when used in the AR(1) model. 

0 The modified exponential, parabolic, and sin(kAr)/(kAr) correlation functions 

are not suitable for the second order AR(2) model because of difficulties 

with statistical stationarity (dashes in Table 1). 

0 The Gaussian, parabolic and sin(Mr)/(kAr) correlations produce o(f) values 

which are too low (even when statistical stationarity problems are not 

present) when used in the second order AR(2) model. 

0 The a(f) values are about as good for the (l+mAr)exp(-mAr) correlation in the 

AR(2) model as for the exponential and modified exponential functions. 

However the (l+mAr)exp(-mAr) correlation must be ruled out for its low 

7 



resultant values of gradient, df/dr. 

Although the a(f) values for the fractal model results average close to the 

nominal value of 10.0, the computed a(f) values are more variable (larger 4 

standard deviation about the average) than for the exponential correlation. 

The a(f) values for the modified exponential correlation are about as good as 

those for the exponential correlation, when used in the AR(1) model, even in 

the separation range Ar/L < 0.05 where the correlation function changes to a 
form which no longer preserves strict statistical stationarity. 

The df/dr values from the modified exponential correlation are consistent 

with those from the exponential correlation for the range Ar/L > 0.05, but 
Leu,&*, bo.diided by a cor;star*t .--.I..#. Fn+ rc.l-."ratinnr e m n l l  a%- thaz 

"aLL4s L V L  *GtnCLLCL\-L""L "...ULA.-L 
----.- 
Ar - O.O5L, as required. 

With all of these results taken into consideration, only the modified exponen- 

tial correlation function in the AR(1) model meets the necessary requirements of 

consistency with observed o(f) and df/dr values at large separations (Ar > about 
1 km) ,  while yielding bounded values of df/dr for small separations (Ar < about 
1 km). The one possible exception would be the fractal model with a larger 

value of the roughness factor, c. However, practical problems of implementation 

in GRAM rule this out without very major program modifications. 
Figure 5 shows simulated vertical profiles of density perturbations 

computed by using the modified exponential correlation function. Comparison of 

Figure 5 with Figure 1, computed with the simple exponential correlation 

function, shows that the gradient values for the 0.25 km vertical separation 

case are significantly reduced, while the rms perturbation values themselves are 

still consistent with the input value. The results of Figures 1 and 5 (as well 

as Figure 4) were all computed by a two-scale perturbation model, similar to 

that actually used in GRAM, with a small scale value of 10 km, and a large scale 

value of 20 km. Input values of rms magnitude for the perturbations were 10% 
for both small scale and large scale perturbations (14.1% for the total 

perturbations shown in the Figures). Figure 5, combined with the results 

summarized in Table 1, thus confirm that the modified exponential correlation 
function adequately addresses the current problems of large gradients at small 

separations, while leaving the perturbation model essentially unchanged (and 

8 



consistent with observed data) at large separations. 

A STUDY OF HORIZONTAL PERTURBATION STRUCTURE 

During the original study of horizontal and vertical structure functions on 

which the GRAM correlation function and scales are based (Justus and Woodrum, 

1972), only a very limited amount of data was available for horizontal structure 

function analysis. A more extensive data set is that of the density measure- 

ments made on Space Shuttle reentry trajectories. These data were provided to 

us by Mr. John. Findlay of Flight Mechanics and Control, Inc. 
These shuttle data have been used in a structure function analysis by first 

interpolating the data, observed at irregular spacing of horizontal and vertical 

positions, to a constant step size in the horizontal. Since the Shuttle 
t r a j e c t o r i e s  thrr?u-h 0" +he ---- 45-95 &-m r z ~ u e  0- analyzed ----- zre nearly f inr iznnte l  (glide 

slope of about 1/15 or less), the rms differences between successive values of 

separation are taken to be representative of a horizontal structure function. 

The structure function, given by equation (4), approaches the value 

9 (10) 
2 2 CAf > - 2 af(Ar/L) 

for small separations Ar/L, when the exponential correlation function applies. 

The observed Shuttle correlation function data were plotted on log-log scale and 

power-law exponents for d f  > versus Ar were determined by best-fit slopes. 

Data from overlapping height intervals of 45-65km, 55-75 km, 65-85 km and 75-95 

km were considered separately. The average values of the power law exponent 

[expected value 1.0, from equation (6)], were found to be 1.05f0.21, 0.94k0.21, 
0.95f0.25, and 1.29f0.23, respectively, for these four height ranges (+ values 

give the one-standard deviation range about the mean value). Except for the 

upper height range (where the data are somewhat uncertain), these results tend 

to confirm the exponential correlation function form for horizontal separations 

as well as for the vertical separations which have been extensively examined 

earlier (Justus and Woodrum, 1972). 

2 
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MODIFICATIONS IN THE GRAM PROGRAM CODE 

The following program code changes will implement the modified correlation 

function model into the GRAM program. Program line number references are as 

given in the GRAM source code listing given in Appendix D of Justus et al. 
(1980). 

After line CORL 4 5 ,  add the following new function: 

FUNCTION CORREL(X) 

DATA A,B/19.51615854016301,1.00041693941245578/ 

RHO = l./EXP(B*X) 
IF(X .LT. Q.05) FSC! - 1. - -- A*Y**2 
CORREL - RHO 

RETURN 

END 

To replace lines PERT 40,  PERT 4 5 ,  PERT 5 0 ,  PERT 5 5 ,  PERT 6 0  AND PERT 6 5 ,  

respectively, insert the following new lines of code: 

10 RDS - CORREL(RDS) 
30 RTS = CORREL(RTS) 

5 0  RVS - CORREL(RVS) 
70 RDL = CORREL(RDL) 

90 RTL - CORREL(RTL) 
110 RVL - CORREL(RVL) 

PERT 40 

PERT 4 5  

PERT 5 0  

PERT 55 

PERT 6 0  

PERT 65  

10 
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MODEL PERTURBAT I ONS 
IO0 
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DENS I TY PERTURBAT I ON, % 
CIRCLE - 2 KM SPACING 
SOUARE - 0.25 KM SPAC NG 

Figure 1 - Simulation of vertical profile of density perturbations 
with the GRAM two-scale model, with two different 
vertical spacings and the exponential correlation function. 
Small scale = 10 km, Large Scale = 20 km. Each with rms 
magnitude of 10% (total magnitude 14.1%) 
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DENS I TY PERTURBAT I ON, % 
CIRCLE - 2 KM SPACING 
SOUARE - 0.25 KM SPACING 

Figure 4 - Simulation of vertical profile of density 
perturbations with the GRAM two-scale model 
and the Gaussian correlation function, with 
two different vertical spacings. Parameter 
values same as i n  Figure 1. 
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DENS I TY PERTURBAT I ON. % 
CIRCLE - 2 KM SPACING 
SOUARE - 0.25 KM SPACING 

Figure 5 - Simulation of vert ica l  prof i le  of density 
perturbations with the GRAM two-scale model 
and the modified exponential correlation function, 
with two different vert ica l  spacings. 
values same as in  Figure 1. 
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Table 2 - 

CORRELATION: 

Ar/L 

0 . 2 0  

0.10 

0 . 0 8  

0 . 0 6  

0 . 0 4  

0 . 0 2  

Expected values of rms gradient df/dr = (Af/Ar)rms from 
equation ( 5 )  and the various correlation function models 
used in Table 1. 

EXPO - 
NENT I AL 

3 0 . 1 1  

4 3 . 6 3  

4 9 . 0 2  

5 6 . 8 8  

7 0 . 0 1  

9 9 . 5 0  

MODIFIED GAUS - 
EXP . SIAN 

3 0 . 1 1  1 2 . 4 4  

4 3 . 6 3  1 2 . 5 1  

4 9 . 0 3  1 2 . 5 2  

5 6 . 8 9  1 2 . 5 2  

6 2 . 4 8  1 2 . 5 3  

6 2 . 4 8  1 2 . 5 3  

PAM- 
BOLI C 

9 . 4 3  

9 . 4 3  

9 . 4 3  

9 . 4 3  

9 . 4 3  

9 . 4 3  

s in(kAx) / 
( U X )  

9 . 0 5  

9 . 0 6  

9 . 0 7  

9 . 0 7  

9 . 0 7  

9 . 0 7  

(l+mAx)x 
exv( -mAx) 

1 7 . 5 4  

1 8 . 7 2  

1 8 . 9 7  

1 9 . 2 2  

1 9 . 4 8  

1 9 . 7 4  
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