843 research outputs found

    The significant role of post-pairing male behavior on the evolution of male preferences and female traits

    Get PDF
    Existing sexual selection theory postulates that a sufficiently large variation in female fecundity or other direct benefits are fundamental for generating male mate choice. In this study, we suggest that, in addition to pre-pairing preferences, choosy males can also have different post-pairing behaviors, a factor which has been comparatively overlooked by previous studies. We found that both male preferences and female traits could evolve much more easily than previously expected when the choosy males that paired with unpreferred females would allocate more efforts to seeking additional post-pairing mating opportunities. Furthermore, a costly female trait could evolve when there was a trade-off between seeking additional mating and paternal care investment within social pair for choosy males. Finally, a costly male preference and a costly female trait might still evolve and reach a stable polymorphic state in the population, which might give rise to a high variability in male choice and female traits in nature. We suggest that male mate choice may be even more common than expected, which needs to be verified empirically

    Beyond Scale-Free Networks: integrating Multilayer Social Networks With Molecular Clusters in the Local Spread of Covid-19

    Get PDF
    This study evaluates the scale-free network assumption commonly used in COVID-19 epidemiology, using empirical social network data from SARS-CoV-2 Delta variant molecular local clusters in Houston, Texas. We constructed genome-informed social networks from contact and co-residence data, tested them for scale-free power-law distributions that imply highly connected hubs, and compared them to alternative models (exponential, log-normal, power-law with exponential cutoff, and Weibull) that suggest more evenly distributed network connections. Although the power-law model failed the goodness of fit test, after incorporating social network ties, the power-law model was at least as good as, if not better than, the alternatives, implying the presence of both hub and non-hub mechanisms in local SARS-CoV-2 transmission. These findings enhance our understanding of the complex social interactions that drive SARS-CoV-2 transmission, thereby informing more effective public health interventions

    The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    Get PDF
    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b

    Validating AU Microscopii d with Transit Timing Variations

    Full text link
    AU Mic is a young (22 Myr) nearby exoplanetary system that exhibits excess TTVs that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical "validation" of the tentative planet AU Mic d (even though there are examples of "confirmed" planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O-C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for the period of planet d and then follow those up with detailed TTV and RV MCMC modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596+/-0.00793 days (T_{C,d}=2458340.55781+/-0.11641 BJD), which puts the three planets near a 4:6:9 mean-motion orbital resonance. The mass for d is 1.053+/-0.511 M_E, making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet's atmosphere. Additional TTV observation of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c.Comment: 89 pages, 35 figures, 34 tables. Redid EXOFASTv2 transit modeling to recover more reasonable stellar posteriors, so redid Exo-Striker TTV modeling for consistency. Despite these changes, the overall results remain unchanged: the 12-7-day case is still the most favored. Submitted to AAS Journals on 2023 Feb 9t

    Validating AU Microscopii d with Transit Timing Variations

    Get PDF
    AU Mic is a young (22 Myr), nearby exoplanetary system that exhibits excess transit timing variations (TTVs) that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical “validation” of the tentative planet AU Mic d (even though there are examples of “confirmed” planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O − C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for d’s period, then follow those up with detailed TTV and radial velocity Markov Chain Monte Carlo modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596 ± 0.00793 days ( T _C _,d = 2458340.55781 ± 0.11641 BJD), which puts the three planets near 4:6:9 mean-motion resonance. The mass for d is 1.053 ± 0.511 M _⊕ , making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet’s atmosphere. Additional TTV observations of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Direction reconstruction performance for IceCube-Gen2 Radio

    Get PDF
    The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors. In previous work, direction reconstruction algorithms using the forward-folding technique have been developed for both shallow (â‰Č20 m) and deep in-ice detectors, and have also been successfully used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino Observatory in Greenland (RNO-G)
    • 

    corecore