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Beyond scale‑free networks: 
integrating multilayer social 
networks with molecular clusters 
in the local spread of COVID‑19
Kayo Fujimoto 1*, Jacky Kuo 1, Guppy Stott 2, Ryan Lewis 1, Hei Kit Chan 1, Leke Lyu 2, 
Gabriella Veytsel 2, Michelle Carr 3, Tristan Broussard 3, Kirstin Short 3, Pamela Brown 3, 
Roger Sealy 3, Armand Brown 3 & Justin Bahl 2*

This study evaluates the scale-free network assumption commonly used in COVID-19 epidemiology, 
using empirical social network data from SARS-CoV-2 Delta variant molecular local clusters in 
Houston, Texas. We constructed genome-informed social networks from contact and co-residence 
data, tested them for scale-free power-law distributions that imply highly connected hubs, and 
compared them to alternative models (exponential, log-normal, power-law with exponential cutoff, 
and Weibull) that suggest more evenly distributed network connections. Although the power-law 
model failed the goodness of fit test, after incorporating social network ties, the power-law model 
was at least as good as, if not better than, the alternatives, implying the presence of both hub and 
non-hub mechanisms in local SARS-CoV-2 transmission. These findings enhance our understanding of 
the complex social interactions that drive SARS-CoV-2 transmission, thereby informing more effective 
public health interventions.

Network models have been widely used as a valuable method to represent the complex system of human inter-
actions underlying SARS-CoV-2 transmission1–15. One of the most prominent models is the scale-free network 
model introduced by Barabási and Albert. It is characterized by a power-law distribution of network connectivity, 
signifying the existence of highly connected nodes16,17. In tandem with this, the widely recognized small-world 
network model by Watts and Strogatz18,19 underscores the coexistence of high local clustering and short global 
separation. The short global separation refers to the close proximity of each individual to all other individuals, 
thus indicating a potential for rapid viral spread throughout the network. A scale-free model can be used in 
conjunction with a small-world model20–23. When these network models are incorporated into mathematical 
epidemic frameworks such as Susceptible, Infected, Recovered (SIR)24, Susceptible, Exposed, Infected, Recovered 
(SEIR)25, and Adaptive SIR26, they have capabilities of representing the propagation of pathogens more realisti-
cally. This integration results in more accurate predictions of viral transmission27.

Scale-free networks are characterized by their power-law distribution of network connectivity16,17. These 
networks represent a heterogeneous connectivity distribution where a few highly connected “hubs” coexist with 
a large number of less connected individuals. These hubs primarily contribute to the scale-free property of degree 
heterogeneity, which influences the speed at which a virus can spread through a contact network27. In the specific 
context of SARS-CoV-2, scale-free networks facilitate local clustering, allowing the virus to spread rapidly to 
many closely connected neighbors, resulting in local epidemics. This phenomenon is represented by the presence 
of highly connected hubs, a characteristic exhibited by the long tail of the power-law degree distribution. This 
long tail illustrates a unique pattern within power-law distributions in which the majority of individuals have 
limited connections, while a minority (referred to as the “long tail”) have extensive connectivity, thus forming 
hubs. These hubs promote rapid virus transmission, which is particularly evident in assortative networks28,29 
where hubs tend to connect with other hubs, allowing the virus to spread through a large number of contacts.

In addition, a small number of highly connected infectious agents, or superspreaders, are known for their abil-
ity to infect a large number of secondary contacts. This aligns with the 80/20 Pareto principle30, which estimates 
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that 20% of infectious agents cause 80% of local transmission6. The power-law scaling observed in the connectiv-
ity distribution of confirmed COVID-19 cases provides additional evidence for the existence of superspreaders2. 
The importance of these hubs in heterogeneous networks becomes evident in the rapid transmission of SARS-
CoV-27,27, where they play a key role in facilitating superspreading events and influencing the spread of the virus.

The universality of scale-free networks has been widely observed in various real-world systems, including 
information, biological, and technological network systems16,17. However, contrary to conventional belief, many 
of these networks do not consistently exhibit scale-free structures with power law degree distributions31. Instead, 
they display structural diversity, displaying that alternative distributions (e.g., log-normal, exponential, cutoff 
power laws, Weibull, etc.) may be more appropriate.

While much of the existing COVID-19 research on network-based epidemic models assumes a well-estab-
lished scale-free network structure, often this is done without empirical validation specific to modeling the 
spread of SARS-CoV-2. Many studies rely on simulated network structures8,32,33, which typically have not been 
rigorously evaluated based on empirical network data and molecular clustering information. Consequently, it 
remains uncertain whether the scale-free network assumption is accurate, and thus whether scale-free models are 
adequate to represent the complex social interactions underlying the spread of SARS-CoV-2. This highlights the 
importance of considering a diverse array of network structures to better understand and improve the accuracy 
of modeling social networks in the context of COVID-19.

In this study, we evaluate the applicability of the scale-free network assumption for understanding the real-
world complex social networks underlying the spread of SARS-CoV-2. We integrate multiple sources of real-
world network data, including the SARS-CoV-2 Delta variant viral similarity sequence, personal contacts, and 
household co-residence. This integration provides insights into the complex social interactions that drive trans-
mission of the Delta variant. To construct this multifaceted social network, we first infer epidemiologically linked 
individuals to generate putative SARS-CoV-2 transmission clusters based on the patristic distances (measured 
tip-to-tip distance along branch lengths of a phylogenetic tree). These phylogenetic clusters are then superim-
posed on distinct but overlapping, layers of social networks, using granular empirical data on personal contact 
and intrahousehold co-residence. This process results in the development of a multilayer social network informed 
by phylogeny. We then characterize the network connectivity (degree distribution) of both molecular and social 
networks, statistically comparing the power-law degree distribution with alternative non-scale-free distributions.

With this understanding, there is potential to refine existing public health interventions. By better under-
standing these networks, we can strategically prioritize effective public health responses—including vaccine 
distribution to communities or regions with high transmission rates, or containment efforts such as contact 
tracing and social distancing at highly connected hubs to suppress local transmission.

Methods
Study setting and data collection
The data used to estimate the SARS-CoV-2 transmission network were collected by the Houston Health Depart-
ment (HHD) from individuals residing in the Greater Houston area. These data were obtained from HHD’s 
COVID-19 contact tracing program and HHD’s electronic laboratory reporting (ELR) system. From the ELR, 
we curated patient address information and COVID-19 PCR test results. All data were limited to the dates of 
March 1, 2020, and December 31, 2021.

Data for epidemiologic purposes were collected on positive cases using multiple methods. In the early stages of 
the COVID-19 pandemic, positive individuals were followed up by in-house surveillance investigators using tra-
ditional epidemiologic surveillance methods (i.e., direct interviews of case contacts and medical record abstrac-
tion) to learn more about a patient’s status and contacts. Alternatively, when the capacity for manual outreach 
was exceeded, the HHD worked with a contractor to automate the process. Qualtrics and telephone surveys were 
also used to gather additional information.

To collect contact tracing network data, for asymptomatic cases, contacts were defined as individuals exposed 
24–48 h prior to an index’s positive laboratory test result; for symptomatic cases, contacts were defined as indi-
viduals exposed 24–48 h prior to the earliest symptom onset. Once an individual tested positive, HHD identified 
contacts through an interview, and a primary epidemiologist conducted contact tracing and interviews. Due to 
the volume of cases, the strategy was adjusted to assign a contact tracer after the initial primary epidemiologist 
collected contact information. Contact tracing outreach typically took 24–48 h.

Construction of network data
Phylogenetic networks and analysis of patristic distance
To construct a molecular clustering of the Delta variant of SARS-CoV-2, we make use of a new Nextflow pipeline 
for generating a network database for phylogeny and epidemiologic surveillance, described in Stott, et al34. In this 
pipeline, patristic distances (tip-to-tip distance measured along branch lengths) are used to generate a genetic 
distance network from a time tree35. Using patristic distances, as opposed to measures of genetic distance that 
use sequence differences, creates a network with fewer tie scores and more biologically informed results as it 
leverages more of the information content found in the sequence alignment to generate phylogenetic trees36.

We collected 4176 full-genome sequences from the GISAID database37. These sequences represent the 545 
isolates associated with contact tracing data as well as 3631 reference sequences taken from the North Ameri-
can region-specific Auspice source file from GISAID. The global distribution of these reference sequences used 
in tree building is presented in Fig. S1 in Supplemental Material. We used a Nextflow pipeline to construct a 
patristic distance network for our analysis. We aligned our sequences to the Wuhan/Hu reference strain using 
MAFFT v7.50538. We then used IQ-Tree2 v2.2.0.3 to generate a time tree under a generalized time reversible 
(GTR) substitution model with the Wuhan/WIV04/2019 sequence specified as an outgroup taxon to root the 
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tree39. After constructing our time-scaled phylogenetic tree, a patristic distance network was generated using 
the R package ape39.

Smaller patristic distances imply that individuals are more likely to have been infected by a common source 
or within an overlapping time period. We then filtered out reference sequences from our dataset, leaving only the 
patristic distances between the 545 Houston isolates associated with contact tracing data. To construct putative 
SARS-CoV-2 transmission clusters that allow us to infer epidemiologically linked individuals, we used a 30-day 
patristic distance threshold to generate our phylogenetic network, i.e., 30 days of evolutionary time under our 
model separating the two isolates. Our rationale is as follows: Given the mean intrinsic generation time of the 
Delta variant of SARS-CoV-2, 4.7 days, this would correspond to chains of infection with at least 30/4.7 = 6.38 
individuals40. To minimize noise and improve the quality of our analysis, we employed a heuristic approach 
by excluding connected graphs with fewer than seven individuals. This decision was based on the rationale 
that when dealing with smaller groups, it is unlikely that we have sampled a substantial portion of the infected 
population. Consequently, drawing meaningful inferences from such limited data may be challenging due to 
the lack of necessary context.

Person–person contact network
COVID-19 contact tracing data were collected by HHD through the contact tracing program implemented 
during the pandemic. HHD would identify contacts through an interview (e.g., phone calls, text messages), 
and a primary epidemiologist was assigned to conduct the contact tracing interview. The interview aimed to 
identify close contacts of the person under investigation. HHD defined “close contacts” as individuals who had 
been within 6 feet in proximity to the person under investigation for more than 15 min. We used contact tracing 
data collected from March 1, 2020, to December 31, 2021. The total number of individuals traced during these 
21 months is 169,323, and they form a total of 166,465 connections/contacts. In this network, nodes represent 
individuals, and connections between a pair of individuals indicate that there was physical contact between them 
(i.e., they were exposed to each other).

Intrahousehold network
The primary address data from MAVEN were queried to create a dataset of deduplicated primary addresses, 
totaling 8,858,357 records. After performing text standardization and deduplication, the number of records was 
reduced to 3,553,801. Non-residential addresses were identified by the frequency with which they appeared in 
the standardized dataset. All addresses that appeared more than 15 times were considered non-residential and 
were subsequently excluded from address-matching algorithm. To be considered a match, two individuals must 
have identical (i.e., exactly matching) street numbers, apartment numbers, and ZIP codes. In addition, the street 
names being compared must have a Levenshtein distance greater than 0.75. To be considered co-residents, we 
also required that individuals matched to the same address be associated with the address with some overlap in 
time. To further eliminate non-residential addresses in the final matching result, we removed addresses that were 
associated with more than 10 individuals. The final address matching result had 1,707,126 matches, including 
1,185,691 individuals and 433,162 unique addresses. The matching algorithm was developed in Python using the 
following libraries: Pandas, NumPy, RecordLinkage, and Address41,42. Using these data, we constructed the co-
residency network based on address-matching results. In the co-residency network, nodes represent individuals 
and ties indicate co-residency between a pair of nodes. The ties were coded as “1” if two individuals shared the 
same address and during the same time period; otherwise, the ties were coded as “0” indicating no co-residency.

Construction of a multilayer phylogeny‑informed social network
We generated a three-layer phylogeny-informed social network, with each layer progressively increasing the com-
plexity of the network configuration. The configuration of these layers is described as follows: (1) Phylogenetics 
only (Phylo-only): This initial layer consists only of phylogenetic clusters composed of epidemiologically linked 
individuals. It serves as a foundation for subsequent layers. (2) Phylo and person-to-person contact (Phylo + PP): 
In this second layer, we integrated person-to-person contact information, creating connections between indi-
viduals based on their direct social interactions. (3) Phylo + PP and household co-residence (Phylo + PP + HH). 
The final and most complex layer incorporates household co-residence data, connecting individuals through 
shared living environments. The inclusion criteria for nodes at each layer dictate that a node must either be part 
of the phylogenetic layer or have a direct connection to a node within that layer. This criterion ensures that all 
individuals in the network are phylogenetically informed. To construct our multilayer network, we used com-
prehensive data collected over a period of time from March 1, 2020, to December 31, 2021. Following this data 
aggregation, we located the individuals from the Phylo-only network within each layer. This identification process 
was performed using multiple identifiers, such as the individual’s name, date of birth, and specific specimen-
related details (e.g., date of specimen collection). We then proceeded to include additional individuals based on 
their first-degree ties, defined as direct connections, to nodes within the phylo-only network. For example, in 
the Phylo + PP + HH network, we included individuals from both the phylogenetic layer and additional nodes 
that are directly connected to one of the phylogenetic nodes via person-to-person or shared household edges.

Network visualization
We used the ‘igraph’ package43 in R to process the various network data objects and our visualizations were 
generated by the ‘GGally’ package44 in R.
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Scale‑free network analysis
Evaluation of scale‑free property: power law degree distribution
We used the method introduced by Broido and Clauset31 to test the scale-free hypothesis. This method employs 
a statistical goodness of fit test to assess the statistical plausibility of the power law model in representing the net-
work’s degree sequence, specifically in the upper tail of the degree distribution. It then uses a likelihood ratio test 
to compare this model to four alternative non-power law distributions, each fitted to the same upper tail region31.

Scale-free networks are characterized by the right-tail degree distribution of the network connectivity. Spe-
cifically, the right-tail can be modeled by a discrete power law distribution defined as: 

where ζ (α, kmin) is the Hurwitz zeta function and serves as the normalizing constant in the power-law distri-
bution. The right-tail starting point is denoted by kmin , and the scaling parameter is α . For a ‘strong scale-free’ 
structure, the power law model should achieve the following: (1) alternative models are not favored over the 
power law model, (2) the degree distribution should pass the power law goodness of fit test, (3) the estimated α 
should be in the range 2 < α̂ < 3 , and (4) the right-tail sample size should be sufficiently large. For a ‘weak scale-
free’ structure, we only require that the power law model passes the goodness-of-fit test and that the right-tail 
sample size is sufficiently large (i.e., conditions 2 and 4). Finally, if the network only meet the first criterion, then 
we classify it as being ‘super-weak scale-free’. These classification criteria are described in more detail elsewhere31.

Statistical GOF test of scale‑free network
The goodness of fit assessment test was performed to test the scale-free structure of our SARS-CoV-2 Delta 
variant transmission networks. The goodness of fit test uses Monte–Carlo simulation to determine whether the 
power law model can be considered an adequate fit to the degree distribution of the transmission networks. The 
data simulation was performed separately for the right and left tails. The data in the right-tail region were gener-
ated from the estimated power law model, while the left-tail were generated by bootstrapping from the left tail 
of the observed data. We fit the power law model to simulate the data and extracted the Kolmogorov–Smirnov 
(KS) statistic. By repeating this process several times, we approximated the distribution of the KS statistic under 
the assumption that the null hypothesis is true (i.e., the underlying generating mechanism of the data follows a 
power law model). By comparing the KS statistic from the actual data to the simulated data, we quantified how 
much the actual data deviated from the theoretical power law model. The p-value of the goodness of fit test is 
the proportion of the simulated KS statistic that is greater than the KS statistic from the observed data. A good 
fit is supported by p > 0.1045.

Alternative models for the degree distribution
We compared the power law model to four alternative distributions. The competing alternative distributions 
included the (1) exponential distribution, the (2) log-normal distribution, the (3) power law with exponential 
cutoff distribution, and the (4) Weibull distribution following the method in Broido and Clauset31. The expo‑
nential degree distribution has a thin tail with an exponential decrease in the probability of highly-connected 
individuals. The power law distribution represents an opposite, i.e., the fat or heavy-tailed probability of degree 
where the decay at larger degrees is slower than exponential46. The log-normal degree distribution is one of the 
crossover distributions between the power law and exponential distributions. It is flexible in that it can capture 
large variability in the data through the σ parameter. Depending on the value of σ , the shape of the log-normal 
may resemble that of a power law. The power law with exponential cutoff is another crossover distribution. It 
represents heterogeneous connectivity similarly to the power law degree distribution (as a special case), but the 
difference between these distributions is that the power law with exponential cutoff has less extreme heterogeneity 
in the right tail of the degree distribution, ensuring that the number of highly-connected individuals is limited. 
The high degree cutoff may represent a limit to the number of meaningful relationships with a large number of 
acquaintances that individuals can maintain in social networks, indicating the presence of phenomena in addition 
to scale-free networks46. The Weibull distribution includes a variety of shapes, ranging from light-tailed to heavy-
tailed (depending on its parameters), and accommodates a wide range of network connectivity. Where necessary, 
the distributions were discretized using the cumulative distribution function. A variant of the likelihood ratio 
test was performed to compare the power law model and the alternative models. A model is considered better 
than another when the likelihood ratio test has p < 0.1031. Subsequently, we systematically compared all possible 
model pairs, assigning ranks based on statistical significance. In case of  p ≥ 0.10 , we considered the comparison 
a tie. Our analysis treats all nodes equally, regardless of their layer or the presence of overlaps. The probability 
density functions for these distributions are presented in Table S1 in Supplemental Material.

Results
Network visualization
The left column of Fig. 1 displays visualizations of three distinct network types: Phylo-only, Phylo + PP, and 
Phylo + PP + HH, arranged from top to bottom.

Each network is differentiated by nodal colors, representing two primary categories: nodes present in the 
Phylo-only layer and nodes added through social networks (PP or HH). Table 1 provides descriptive statistics for 
each network, including size, density, component count, and COVID-19 positivity rate among non-Phylo nodes.

The base layer, Phylo-only, comprises 162 nodes and 143 edges with a network density of 1.10%. Adding 
the PP layer increases the network to 352 nodes and 424 edges, subsequently reducing the network density to 

P(k) =
k−α

ζ (α, kmin)
,
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Figure 1.   Network visualization of the multilayer COVID-19 transmission networks and the corresponding 
degree distributions. The networks’ sizes are 162, 352, and 464 for every added layer. Similarly, the network 
densities are 1.10%, 0.69%, and 0.55%. A visualization of the three networks, the empirical degree distribution 
(black dotted line), and the fitted models (colored solid lines). In the Phylo-only network, the power-law model 
was not as good as other alternative models. However, with the inclusion of social network ties (i.e., person-
person contacts and intrahousehold connections), the results show that the power-law model was as good as, 
if not better than, the alternative models, suggesting the presence of hub and non-hub mechanisms within the 
SARS-CoV-2 transmission network. Optimization issues were encountered in the Weibull model of the Phylo-
only network that prevented the algorithm from converging properly, which aligns with the estimated parameter 
� , as it is very large 

(
1

�
= 0.002

)
 . Proper convergence in models is typically indicated by a trend that aligns with 

the observed data. In the Phylo + PP network, the estimated PLCut model was found to be approximately the 
same as the PL model, causing their respective lines to largely coincide.
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0.69%. The COVID-19 positivity rate for the non-Phylo nodes was 40.36%. Adding the HH layer further extends 
the network to 464 nodes and 588 edges with a network density of 0.55% and a COVID-19 positivity rate for 
non-Phylo nodes of 36.36%. Regarding the overlaps in nodes and edges across these network layers within the 
context of the Phylo + PP + HH network—comprising a total of 464 nodes—1 node (0.22%) is shared between the 
Phylo and HH, 77 nodes (16.59%) overlap between the Phylo and PP, 41 nodes (8.84%) are shared between the 
PP and HH, and 83 nodes (17.89%) are concurrent members of the Phylo, PP, and HH. With respect to the 588 
edges of the network, there are 2 edges (0.34%) that overlap between Phylo and HH, 54 edges (9.18%) between 
Phylo and PP, 67 edges (11.39%) between PP and HH, and 44 edges (7.48%) that span all three categories of 
Phylo, PP, and HH.

Scale‑free network analysis
The right column of Fig. 1 displays the empirical degree distribution (depicted by a black dotted line) juxtaposed 
with the fitted models (illustrated with colored solid lines). The model includes power law (green), exponential 
(orange), log-normal (yellow), power-law with an exponential cutoff (blue), and Weibull (pink) degree distribu-
tions. Table 2 presents results from a comprehensive scale-free network analysis, listing model estimates, the 
goodness of fit test, AIC, likelihood ratios test composed of alternative models, and a ranking based on each 
network layer’s model performance.

In the Phylo-only network, the power law model yielded estimates of k̂min = 1 and α̂ = 2.25 . However, the 
goodness-of-fit test indicated a poor fit for the power law model. When compared to the alternative models, the 

Table 1.   Network summaries of different layers of the COVID-19 networks. Network density is computed as 
the number of actual edges divided by the total number of possible edges. Number of components is defined 
as the number of disconnected parts within the network. Phylo phylogenetic, PP person-person contact, HH 
intrahousehold co-residency.

Network type

Basic network summary numbers

# of nodes # of edges (density in %) # of components Positivity rate (%) in non-Phylo nodes

(L1) Phylo only 162 143 (1.10%) 64 N/A

(L2) Phylo + PP 352 424 (0.69%) 63 40.36

(L3) Phylo + PP + HH 464 588 (0.55%) 63 36.36

Table 2.   Scale-free network analysis results along with candidate models’ performance at different network 
layers. Rankings were determined by the likelihood ratio test (LRT). In cases where there is no significant 
difference between the models, the models are considered tied in their ranking. Phylo phylogenetic layer, PP 
person-person contact layer, HH intrahousehold co-residency layer. The best performing models by LRT 
ranking are in bold.

Network layer/candidate models

Scale-free analysis

Model estimates AIC Ranking by LRT Conclusion

(L1) Phylo only

 Power Law ( α , k-min, GoF p) (2.249, 1, < 0.01) 416.630 4

Not scale-free: Power Law GoF test failed, and some models were better than Power Law

 Exponential ( �) (0.836) 393.416 1

 Log-Normal ( µ , σ) (0.187, 0.733) 395.535 1

 Power Law with Exponential Cutoff 
( � , α) (1.000, 0.433) 395.035 1

 Weibull 
(
β , 1

�

)
(0.811, 0.002) 394.378 5

(L2) Phylo + PP

 Power Law ( α , k-min, GoF p) (3.173, 3, < 0.01) 359.328 1

Super-weak scale-free: Power Law GoF test failed but Power Law was better than or as 
good as the alternative models

 Exponential ( �) (0.434) 396.385 1

 Log-Normal ( µ , σ) (− 5.123, 1.711) 358.240 1

 Power Law with Exponential Cutoff 
( � , α) (3.173, 4.551e−15) 359.328 1

 Weibull 
(
β , 1

�

)
(0.615, 7.799) 369.637 5

(L3) Phylo + PP + HH

 Power Law ( α , k-min, GoF p) (2.436, 2, < 0.01) 893.425 1

Super-weak scale-free: Power Law GoF test failed but Power Law was better than or as 
good as the alternative models

 Exponential ( �) (0.417) 916.050 1

 Log-Normal ( µ , σ) (− 0.027, 1.030) 879.171 1

 Power Law with Exponential Cutoff 
( � , α) (1.815, 0.092) 884.232 1

 Weibull 
(
β , 1

�

)
(0.564, 16.116) 883.130 5
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exponential distribution, log-normal distribution, and power law with exponential cutoff all performed better 
than the power law model.

For the subsequent network layer (Phylo + PP), the power law model generated k̂min = 3 and α̂ = 3.17 . The 
goodness of fit test produced a p-value less than 0.01. When compared with alternative models, the power law 
model was better than, or at least as good as, all alternative models.

We obtained similar results when we added the intrahousehold layer (HH) of the network to the previous 
layer. The power law model’s estimates were k̂min = 2 and α̂ = 2.44. A p-value less than 0.01 was also observed 
in the goodness of fit test. When compared to the alternative models, the power law model was also better than, 
or at least as good as, all the alternatives.

Overall, our network data did not provide enough evidence to support a strong scale-free network structure 
in our empirical SARS-CoV-2 transmission network data. The goodness-of-fit tests consistently negated the 
power law model across all network layers. At best, the empirical networks could be considered as ‘super-weak 
scale-free’, as the power law model did not fit the empirical degree distribution well.

Discussion
Our study evaluated the applicability of a scale-free network model in representing the real-world complex 
social interactions underlying the spread of SARS-CoV-2. These interactions encompass multilayer molecular 
phylogenetic clustering, personal contacts, and intrahousehold co-residence. For the network solely based on 
phylogenetics (Phylo-only), our findings indicate that it is improbable to observe a scale-free power law structure, 
which would imply the existence of hubs influencing the spread of the Delta variant of SARS-CoV-2. Instead, 
other connectivity distributions, such as exponential, log-normal, and power law with an exponential cutoff, 
appear to be more plausible.

The first plausible connectivity pattern we identified, the exponential distribution, indicates that the phy-
logenetic connections between those infected by the Delta variant demonstrate a low variance in connectivity 
distribution. This stands in contrast to networks characterized by highly-connected hubs. Such a homogeneous 
network may exhibit a more evenly distributed local clustering pattern. The second observed plausible con-
nectivity pattern, the log-normal distribution, suggests a broad range of degree distributions. Most individuals 
have a moderate number of connections, falling in the middle, while only a few fall outside this bracket. Similar 
to the exponential distribution, log-normal networks also display a local clustering pattern that is more evenly 
distributed. Furthermore, they align with the characteristics of a scale-free power law connectivity distribution. 
The third connectivity pattern, characterized by a power law with an exponential cutoff for the right-tail truncated 
distribution, effectively limits the number of highly-connected individuals. This results in more homogeneous 
clustering patterns compared to the power law without the cutoff. By introducing this cutoff, the variance in 
local clustering is reduced, resulting in a more consistent and homogeneous network.

Generalizing these results poses a challenge due to our limited sampling among SARS-CoV-2 positive indi-
viduals. Our selected patristic distance threshold of 30 days will lead to transmission chains of up to length 
7 between connected sample pairs. These long transmission chains, combined with our limited sampling of 
SARS-CoV-2 samples in the area, will obfuscate much of the underlying network structure when using only 
the phylogenetic network. Investigating these biases in sampling and elucidating how they affect downstream 
analyses will be important in future phylogenetic network analysis. One potential avenue for further study is 
to develop more complex hierarchical Bayesian models that might allow us to incorporate models for sampling 
bias into our network inferences.

When a social layer of personal contact ties, irrespective of the COVID-19 infection status, is superimposed 
on the phylogenetic clusters (Phylo + PP), our result indicates the plausibility of a scale-free power law degree 
distribution. This underscores the significance of social contacts in forming hubs. These hubs consist of a few 
highly-connected individuals who have increased opportunities to interact with infected network members. If 
these individuals become virus carriers, they are highly likely to spread the virus not only within the personal 
network but also more globally by bridging less connected individuals (disassortative networks) or by linking 
different highly-connected hubs (assortative networks) whose members may carry different viral variants (from 
different phylogenetic clusters). This will lead to multiple disparate viral variants being present within the same 
social network cluster.

Alternative degree distributions such as exponential, log-normal, and power law with exponential cutoff 
remain plausible within the personal contact network surrounding the delta-variant SARS-CoV-2 clusters. These 
connectivity distributions, discussed above, demonstrate more homogeneous connectivity patterns and fewer 
outliers for highly-connected individuals, making them appropriate for representing the local clustering of social 
connections surrounding SARS-CoV-2 delta-variant clusters. These trends persist even when the social layer of 
intrahousehold networks (Phylo + PP + HH) is included. In all cases, whether considering hubs (plausibility of 
power law distribution) or non-hubs (plausibility of alternative distributions), both mechanisms can contribute 
to viral spread throughout the population.

Our study also has several limitations. First, our phylogenetic data focused primarily on the Delta variant. 
This limits the generalizability of the results to other SARS-CoV-2 variants or airborne infections with different 
basic reproduction numbers, which represent the average number of secondary infections caused by an infected 
individual. Future research should investigate multiple variants to comprehend complex social interactions and 
variant-specific behaviors of viral propagation. Second, the maximum sample size we used was determined by 
our focus on samples from the Delta sequence data. While this ensures a biologically informed dataset, it may 
limit the breadth of our conclusions given the perceived small network size. To address this issue, we conducted 
a subsequent sensitivity analysis that included all accessible social network data collected between March 1, 2020 
and December 31, 2021—with sample sizes of 29,111 for the person-to-person contact network (PP) and 28,389 
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for the combined PP and intrahousehold co-residence (PP + HH) network—both of which networks suggested 
the power-law model as not a good fit (p < 0.001), reinforcing our observations that empirical social networks 
often deviate from scale-free structure. Third, missing links due to underreporting of contacts or limited contact 
tracing resources may have resulted in an incomplete representation of transmission patterns. Fourth, our study 
is limited in the use of aggregated social network data, based on our assumptions on the resilience of pre-existing 
close social ties during the pandemic47. The contact tracing data and test data we used presented challenges in 
ascertaining the duration of co-residence. Adequately capturing long-term change is particularly challenging 
given the complex interplay between social interactions and the biology of specific variants. Future research 
should examine network dynamics including network growth and preferential attachment16,17. Fifth, our study 
focused on the scale-free power law to analyze the structure of the SARS-CoV-2 transmission network. On the 
other hand, properties of small-world networks18,19 represent a different structure that is often used in network-
based epidemic models for COVID-19 to represent contact networks4,13–15. These networks are characterized by 
their high local clustering coexisting with short global separations or shortcuts that connect distant individuals. 
Future research would benefit from investigating small-world properties and other network topologies, such 
as community modularity48 to gain insight into both the local and broader transmission implications of SARS-
CoV-2 and to provide a solid foundation for future studies. Sixth, the phylogenetic network might be limited 
due to our large patristic distance threshold (causing connected pairs to represent chains of up to 7 unsampled 
people) and low percentage of cases sequenced. Given the high percent positivity rate, we can infer that we do 
not have sequence data for the vast majority of cases. Future research should investigate how sampling may 
affect our phylogenetic network hierarchical Bayesian modeling and investigate questions around differential 
sequencing availability by demographic characteristics. Finally, although beyond the scope of this study, different 
connectivity patterns of social interactions at common outbreak sites (e.g., schools, homeless shelters, nursing 
homes) may drive viral transmission. Future research could gain additional insight into the behavior of viral 
transmission by incorporating spatial information.

Conclusion
In conclusion, this study addresses a knowledge gap by evaluating the applicability of widely used scale-free 
network models in capturing the complex social interactions underlying the phylogenetically supported SARS-
CoV-2 spread. Our results suggest that although scale-free network properties have been widely adopted in 
COVID-19 network-based epidemic models, they may not fully capture the intricacies of real-world social inter-
actions influencing SARS-CoV-2 spread. As interactions between individuals with similar viral strains increase, 
network connectivity reflects a power-law scale-free network, and multiple forms of degree distributions can 
represent this connectivity. This diversity in connectivity patterns highlights two points: first, the importance of 
targeting local clusters with interventions such as vaccination or contact tracing to disrupt transmission pathways; 
and second, the need for a comprehensive approach to capture the consistent clustering pattern of SARS-CoV-2 
within local communities. Ultimately, understanding these complex social dynamics could better prepare us for 
future pandemics and improve public health responses.

Data availability
Data were collected through COVID-19 surveillance by the Houston Health Department which did not require 
informed consent. This study was approved by the Institutional Review by the Committee for the Protection 
of Human Subjects at the University of Texas Health Science Center at Houston (HSC-SPH-20-1022). The de-
identified data were analyzed in accordance with a Memorandum of Understanding for data sharing between 
the Houston Health Department and the University of Texas Health Science Center at Houston. All methods 
were carried out in accordance with relevant guidelines and regulations. The data that support the findings of 
this study are available from the Houston Health Department, but restrictions apply to the availability of these 
data. Data are however available from the authors upon reasonable request with the written permission of the 
Houston Health Department. Permission from the Houston Health Department may be requested by contact-
ing the Investigative Review Committee (analysisdatarequest@houstontx.gov). More: www.​houst​onhea​lth.​org/​
about/​inves​tigat​ive-​review-​commi​ttee. R programming codes for this paper are located at: https://github.com/
Fujimoto-lab-UTHealth-HHD/Beyond-scale-free-networks
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