25 research outputs found
First Science Results From SOFIA/FORCAST: Super-Resolution Imaging of the S140 Cluster at 37\micron
We present 37\micron\ imaging of the S140 complex of infrared sources
centered on IRS1 made with the FORCAST camera on SOFIA. These observations are
the longest wavelength imaging to resolve clearly the three main sources seen
at shorter wavelengths, IRS 1, 2 and 3, and are nearly at the diffraction limit
of the 2.5-m telescope. We also obtained a small number of images at 11 and
31\micron\ that are useful for flux measurement. Our images cover the area of
several strong sub-mm sources seen in the area -- SMM 1, 2, and 3 -- that are
not coincident with any mid-infrared sources and are not visible in our longer
wavelength imaging either. Our new observations confirm previous estimates of
the relative dust optical depth and source luminosity for the components in
this likely cluster of early B stars. We also investigate the use of
super-resolution to go beyond the basic diffraction limit in imaging on SOFIA
and find that the van Cittert algorithm, together with the "multi-resolution"
technique, provides excellent results
First Science Observations with SOFIA/FORCAST: Properties of Intermediate-Luminosity Protostars and Circumstellar Disks in OMC-2
We examine eight young stellar objects in the OMC-2 star forming region based
on observations from the SOFIA/FORCAST early science phase, the Spitzer Space
Telescope, the Herschel Space Observatory, 2MASS, APEX, and other results in
the literature. We show the spectral energy distributions of these objects from
near-infrared to millimeter wavelengths, and compare the SEDs with those of
sheet collapse models of protostars and circumstellar disks. Four of the
objects can be modelled as protostars with infalling envelopes, two as young
stars surrounded by disks, and the remaining two objects have double-peaked
SEDs. We model the double-peaked sources as binaries containing a young star
with a disk and a protostar. The six most luminous sources are found in a dense
group within a 0.15 x 0.25 pc region; these sources have luminosities ranging
from 300 L_sun to 20 L_sun. The most embedded source (OMC-2 FIR 4) can be fit
by a class 0 protostar model having a luminosity of ~50 L_sun and mass infall
rate of ~10^-4 solar masses per year.Comment: Accepted by ApJ Letter
SOFIA/FORCAST and Spitzer/IRAC Imaging of the Ultra Compact H II Region W3(OH) and Associated Protostars in W3
We present infrared observations of the ultra-compact H II region W3(OH) made
by the FORCAST instrument aboard SOFIA and by Spitzer/IRAC. We contribute new
wavelength data to the spectral energy distribution, which constrains the
optical depth, grain size distribution, and temperature gradient of the dusty
shell surrounding the H II region. We model the dust component as a spherical
shell containing an inner cavity with radius ~ 600 AU, irradiated by a central
star of type O9 and temperature ~ 31,000 K. The total luminosity of this system
is 71,000 L_solar. An observed excess of 2.2 - 4.5 microns emission in the SED
can be explained by our viewing a cavity opening or clumpiness in the shell
structure whereby radiation from the warm interior of the shell can escape. We
claim to detect the nearby water maser source W3 (H2O) at 31.4 and 37.1 microns
using beam deconvolution of the FORCAST images. We constrain the flux densities
of this object at 19.7 - 37.1 microns. Additionally, we present in situ
observations of four young stellar and protostellar objects in the SOFIA field,
presumably associated with the W3 molecular cloud. Results from the model SED
fitting tool of Robitaille et al. (2006, 2007} suggest that two objects (2MASS
J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity (~
236 - 432 L_solar) protostars; one object (2MASS J02270887+6152344) is either a
high-mass protostar with luminosity 3000 L_solar or a less massive young star
with a substantial circumstellar disk but depleted envelope; and one object
(2MASS J02270743+6152281) is an intermediate-luminosity (~ 768 L_solar)
protostar nearing the end of its envelope accretion phase or a young star
surrounded by a circumstellar disk with no appreciable circumstellar envelope.Comment: 12 pages, 8 figures, 2 tables, accepted by Ap
Single Molecule Conformational Memory Extraction: P5ab RNA Hairpin
Extracting kinetic models from single
molecule data is an important
route to mechanistic insight in biophysics, chemistry, and biology.
Data collected from force spectroscopy can probe discrete hops of
a single molecule between different conformational states. Model extraction
from such data is a challenging inverse problem because single molecule
data are noisy and rich in structure. Standard modeling methods normally
assume (i) a prespecified number of discrete states and (ii) that
transitions between states are Markovian. The data set is then fit
to this predetermined model to find a handful of rates describing
the transitions between states. We show that it is unnecessary to
assume either (i) or (ii) and focus our analysis on the zipping/unzipping
transitions of an RNA hairpin. The key is in starting with a very
broad class of non-Markov models in order to let the data guide us
toward the best model from this very broad class. Our method suggests
that there exists a folding intermediate for the P5ab RNA hairpin
whose zipping/unzipping is monitored by force spectroscopy experiments.
This intermediate would not have been resolved if a Markov model had
been assumed from the onset. We compare the merits of our method with
those of others
A conscious mouse model of gastric ileus using clinically relevant endpoints
BACKGROUND: Gastric ileus is an unsolved clinical problem and current treatment is limited to supportive measures. Models of ileus using anesthetized animals, muscle strips or isolated smooth muscle cells do not adequately reproduce the clinical situation. Thus, previous studies using these techniques have not led to a clear understanding of the pathophysiology of ileus. The feasibility of using food intake and fecal output as simple, clinically relevant endpoints for monitoring ileus in a conscious mouse model was evaluated by assessing the severity and time course of various insults known to cause ileus. METHODS: Delayed food intake and fecal output associated with ileus was monitored after intraperitoneal injection of endotoxin, laparotomy with bowel manipulation, thermal injury or cerulein induced acute pancreatitis. The correlation of decreased food intake after endotoxin injection with gastric ileus was validated by measuring gastric emptying. The effect of endotoxin on general activity level and feeding behavior was also determined. Small bowel transit was measured using a phenol red marker. RESULTS: Each insult resulted in a transient and comparable decrease in food intake and fecal output consistent with the clinical picture of ileus. The endpoints were highly sensitive to small changes in low doses of endotoxin, the extent of bowel manipulation, and cerulein dose. The delay in food intake directly correlated with delayed gastric emptying. Changes in general activity and feeding behavior were insufficient to explain decreased food intake. Intestinal transit remained unchanged at the times measured. CONCLUSION: Food intake and fecal output are sensitive markers of gastric dysfunction in four experimental models of ileus. In the mouse, delayed gastric emptying appears to be the major cause of the anorexic effect associated with ileus. Gastric dysfunction is more important than small bowel dysfunction in this model. Recovery of stomach function appears to be simultaneous to colonic recovery
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy.
Peer reviewe
Testing of mid-infrared detector arrays for FORCAST
This paper presents results on performance testing of mid-infrared detector arrays for the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). FORCAST is a two-channel camera that utilizes a Si:As blocked impurity band (BIB) 256 × 256 detector array for imaging through discrete filters at 5 - 25 microns, and a Si:Sb BIB 256 × 256 detector array for imaging at 25 - 40 microns, over a 3.2\u27 × 3.2\u27 field of view, under high thermal background conditions. DRS Technologies has designed and fabricated several Si:As BIB and Si:Sb BIB engineering grade detector arrays which we test as candidate arrays for FORCAST. We present their initial laboratory test performance results
