124 research outputs found

    Training safer orthopedic surgeons Construct validation of a virtual-reality simulator for hip fracture surgery

    Get PDF
    BACKGROUND AND PURPOSE: Virtual-reality (VR) simulation in orthopedic training is still in its infancy, and much of the work has been focused on arthroscopy. We evaluated the construct validity of a new VR trauma simulator for performing dynamic hip screw (DHS) fixation of a trochanteric femoral fracture. PATIENTS AND METHODS: 30 volunteers were divided into 3 groups according to the number of postgraduate (PG) years and the amount of clinical experience: novice (1–4 PG years; less than 10 DHS procedures); intermediate (5–12 PG years; 10–100 procedures); expert (> 12 PG years; > 100 procedures). Each participant performed a DHS procedure and objective performance metrics were recorded. These data were analyzed with each performance metric taken as the dependent variable in 3 regression models. RESULTS: There were statistically significant differences in performance between groups for (1) number of attempts at guide-wire insertion, (2) total fluoroscopy time, (3) tip-apex distance, (4) probability of screw cutout, and (5) overall simulator score. The intermediate group performed the procedure most quickly, with the lowest fluoroscopy time, the lowest tip-apex distance, the lowest probability of cutout, and the highest simulator score, which correlated with their frequency of exposure to running the trauma lists for hip fracture surgery. INTERPRETATION: This study demonstrates the construct validity of a haptic VR trauma simulator with surgeons undertaking the procedure most frequently performing best on the simulator. VR simulation may be a means of addressing restrictions on working hours and allows trainees to practice technical tasks without putting patients at risk. The VR DHS simulator evaluated in this study may provide valid assessment of technical skill

    Spine-hip relations in patients with hip osteoarthritis

    Get PDF
    Patients with hip osteoarthritis often have an abnormal spine-hip relation (SHR), meaning the presence of a clinically deleterious spine-hip and/or hip-spine syndrome. Definition of the individual SHR is ideally done using the EOS (R) imaging system or, if not available, with conventional lumbopelvic lateral radiographs. By pre-operatively screening patients with abnormal SHR, it is possible to refine total hip replacement (THR) surgical planning, which may improve outcomes. An important component of the concept of kinematically aligned total hip arthroplasty (KA THA) consists of defining the optimal acetabular cup design and orientation based on the assessment of an individual's SHR, and use of the transverse acetabular ligament to adjust the cup positioning. The Bordeaux classification might advance the understanding of SHR and hopefully help improve THR outcomes

    A technical perspective on ASAP – Automated System for Assessment of Programming

    Get PDF
    To learn computer programming, students are invariably asked to complete some form of assignment, which is often assessed by the instructors. This assessment can be time consuming, and an automatic system of assessment can reduce this burden and allow additional functionality. One practical issue is how to integrate them with the other components of the learning management system used by any given institution. ASAP is an automated programming assessment tool which conforms to the JISC e-learning framework, designed for to make such components interoperable and reusable. This paper reviews the previous work on automatic programming assessment, and then presents a technical review of ASAP, discussing its architecture and standards. The paper then discusses some of the challenges that have been faced in developing tests and running foreign code submitted to a web service. Possible extensions to the system are presented, and the current work is described

    Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods

    Get PDF
    Robotic systems have been shown to improve unicompartmental knee arthroplasty (UKA) component placement accuracy compared to conventional methods when used by experienced surgeons. We aimed to determine whether inexperienced UKA surgeons can position components accurately using robotic assistance when compared to conventional methods and to demonstrate the effect repetition has on accuracy. Sixteen surgeons were randomised to an active constraint robot or conventional group performing three UKAs over three weeks. Implanted component positions and orientations were compared to planned component positions in six degrees of freedom for both femoral and tibial components. Mean procedure time decreased for both robot (37.5 mins to 25.7 mins) ( = 0.002) and conventional (33.8 mins to 21.0 mins) ( = 0.002) groups by attempt three indicating the presence of a learning curve; however, neither group demonstrated changes in accuracy. Mean compound rotational and translational errors were lower in the robot group compared to the conventional group for both components at all attempts for which rotational error differences were significant at every attempt. The conventional group's positioning remained inaccurate even with repeated attempts although procedure time improved. In comparison, by limiting inaccuracies inherent in conventional equipment, robotic assistance enabled surgeons to achieve precision and accuracy when positioning UKA components irrespective of their experience

    Academic Placement Data and Analysis: 2016 Final Report

    Get PDF
    Academic Placement Data and Analysis (APDA), a project funded by the American Philosophical Association (APA) and headed by Carolyn Dicey Jennings (UC Merced), aims “to make information on academic job placement useful to prospective graduate students in philosophy.” The project has just been updated to include new data, which Professor Jennings describes in a post at New APPS. She also announces a new interactive data tool with which one can sift through and sort information. (from Daily Nous

    Association between nanoscale strains and tissue level nanoindentation properties in age-related hip-fractures

    Get PDF
    Measurement of the properties of bone as a material can happen in various length scales in its hierarchical and composite structure. The aim of this study was to test the tissue level properties of clinically-relevant human bone samples which were collected from donors belonging to three groups: ageing donors who suffered no fractures (Control); untreated fracture patients (Fx-Untreated) and patient who experienced hip fracture despite being treated with bisphosphonates (Fx-BisTreated). Tissue level properties were assessed by (a) nanoindentation and (b) synchrotron tensile tests (STT) where strains were measured at the ‘tissue’, ‘fibril’ and ‘mineral’ levels by using simultaneous Wide-angle - (WAXD) and Small angle- X-ray diffraction (SAXD). The composition was analysed by thermogravimetric analysis and material level endo- and exo-thermic reactions by differential scanning calorimetry (TGA/DSC3+). Irrespective of treatment fracture donors exhibited significantly lower tissue, fibril and mineral strain at the micro and nanoscale respectively and had a higher mineral content than controls. In nanoindentation only nanohardness was significantly greater for Controls and Fx-BisTreated versus Fx-Untreated. The other nanoindentation parameters did not vary significantly across the three groups. There was a highly significant positive correlation (p < 0.001) between organic content and tissue level strain behaviour. Overall hip-fractures were associated with lower STT nanostrains and it was behaviour measured by STT which proved to be a more effective approach for predicting fracture risk because evidently it was able to demonstrate the mechanical deficit for the bone tissue of the donors who had experienced fractures

    Association between nanoscale strains and tissue level nanoindentation properties in age-related hip-fractures

    Get PDF
    Measurement of the properties of bone as a material can happen in various length scales in its hierarchical and composite structure. The aim of this study was to test the tissue level properties of clinically-relevant human bone samples which were collected from donors belonging to three groups: ageing donors who suffered no fractures (Control); untreated fracture patients (Fx-Untreated) and patient who experienced hip fracture despite being treated with bisphosphonates (Fx-BisTreated). Tissue level properties were assessed by (a) nanoindentation and (b) synchrotron tensile tests (STT) where strains were measured at the 'tissue', 'fibril' and 'mineral' levels by using simultaneous Wide-angle - (WAXD) and Small angle- X-ray diffraction (SAXD). The composition was analysed by thermogravimetric analysis and material level endo- and exo-thermic reactions by differential scanning calorimetry (TGA/DSC3+). Irrespective of treatment fracture donors exhibited significantly lower tissue, fibril and mineral strain at the micro and nanoscale respectively and had a higher mineral content than controls. In nanoindentation only nanohardness was significantly greater for Controls and Fx-BisTreated versus Fx-Untreated. The other nanoindentation parameters did not vary significantly across the three groups. There was a highly significant positive correlation (p < 0.001) between organic content and tissue level strain behaviour. Overall hip-fractures were associated with lower STT nanostrains and it was behaviour measured by STT which proved to be a more effective approach for predicting fracture risk because evidently it was able to demonstrate the mechanical deficit for the bone tissue of the donors who had experienced fractures. [Abstract copyright: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4

    Get PDF
    Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented
    corecore