
A TECHNICAL PERSPECTIVE ON
ASAP – AUTOMATED SYSTEM FOR
ASSESSMENT OF PROGRAMMING

Christopher Douce, David Livingstone, James
Orwell, Steve Grindle and Justin Cobb

A Technical Perspective on ASAP – Automated
System for Assessment of Programming

Christopher Douce, David Livingstone, James Orwell,
Steve Grindle and Justin Cobb

Kingston University
Faculty of Technology

Penrhyn Road
Kingston-upon-Thames

Surrey KT1 2EE

Abstract

To learn computer programming, students are invariably asked to complete
some form of assignment, which is often assessed by the instructors. This
assessment can be time consuming, and an automatic system of assessment
can reduce this burden and allow additional functionality. One practical issue
is how to integrate them with the other components of the learning
management system used by any given institution. ASAP is an automated
programming assessment tool which conforms to the JISC e-learning
framework, designed for to make such components interoperable and
reusable. This paper reviews the previous work on automatic programming
assessment, and then presents a technical review of ASAP, discussing its
architecture and standards. The paper then discusses some of the
challenges that have been faced in developing tests and running foreign code
submitted to a web service. Possible extensions to the system are presented,
and the current work is described.

Introduction

Teachers of computer programming and software design frequently need to
deliver practical assessments to their students. This allows students to
demonstrate their skills and test their own abilities, and allows instructors the
chance to evaluate the performance and knowledge of the students.

Often, these exercises are administered by hand. The assessment is written,
then delivered as coursework, in a workshop session, or as a traditional
closed book exam. Answers are submitted, which have to be tested and
marked individually. These three assessment stages can be described as
development, delivery and grading. To assist instructors in these three tasks
Kingston University have developed ASAP – Automated System for
Assessment of Programming.

The first section of this paper reviews prior systems used in automated testing
of programming, and what can be learnt from previous technical approaches.
Next we discuss the architecture of ASAP, how it relates to the JISC e-
learning framework and other standards, and the decisions taken regarding
the implementation of the system. We then cover the details of the
development and deployment of test classes by instructors, and some of the
technical hazards of testing this way. We conclude by looking at future
developments, including a project currently underway which extends ASAP.

This paper explores ASAP from a technical standpoint, A discussion of more
pedagogical implications, including student and staff evaluations, can be
found in Douce et al. (in press).

Previous Work in Automated Programming Assessment Systems

The earliest automated assignment testing system may have been developed
by Hollingsworth (1960). Rather than using compilers and text editors
students submitted programs written in assembly language using punched
cards. When a grader program was run against a student program, two
values could be returned, either ‘wrong answer’ or ‘program complete’. At the
time of writing, the advantages of an automatic system were considered not
only in terms of tutor resources, but also in efficient use of computing time
which allowed student numbers to learn programming.

As programming systems evolved, so did assessment systems. Forsythe and
Wirth (1965), along with Naur (1964) present a grader system based upon
Algol. The grading programs are said to supply test data, keep track of
running time and keep a ‘grade book’. In the Forsythe and Worth system
every assignment requires a corresponding test program. The operation of
the test program and the subject program were then compared. For every
test program, a corresponding grader program is created. Low-level
equivalents of stream redirect instructions were written to allow a grader to
supply values to the program under test. The principle of individual test
programs for each submission is something that can be seen to continue
throughout the development of automated assessment systems, up to and
including ASAP.

Hext and Winings (1969) propose interesting new ideas. Tests are performed
by comparing a stored test data value against values obtained from the
submitted programming assignment. Following assessment a clearly laid out
listing of results is produced.

Developments in technology naturally introduce changes to the testing
approaches. Rather than allowing students to view the results of the tests
directly, Isaacson and Scott (1989) present a script based system that
iteratively processes a number of submissions executing each one against
test data whilst creating a report.

Reek (1989) presents the TRY system which allows a student to execute test
programs from a command line. Following a test, students are presented with
the results and details of each execution attempt are recorded. Reek makes
an interesting point which we had to take into account; running alien code in a
real environment is dangerous.

Kassandra (von Matt, 1994) facilitates the automatic testing of programs
written using the mathematical languages Matlab and Maple, as well as
Oberon, the successor to Modula-2. Correctness is again tested by
comparing output data with stored test data. The development of the test
software is deemed to be something that the tutor should perform. Kassandra
provides two separate executable elements – a student component and an
‘assistant’ component.

The ASSYST system developed by Jackson and Usher (1997) includes a
sophisticated assessment scheme that analyses C programming
assessments across a number of dimensions, namely whether they are
correct (according to some predefined test data), whether they are efficient in
terms of CPU time and have sensible ratings of complexity and style. One of
the greatest contributions this project makes is the understanding that the
assessment system can also become a ‘grading support system’ comprised of
mechanisms to handle submissions, creating and generating reports and
allows weightings to be assigned to particular tests.

Many ideas found within these early systems can also be seen within BOSS
(apparently an abbreviation for Bob’s Own Submission System) from Warwick
University (Joy & Luck, 1998). The first version of BOSS consisted of a set of
command line programs. Using one program the student could test their
assignments written in the C language to determine whether or not they were
deemed to be correct. When satisfied they could then use a different utility to
submit the program to a secure location. A tutor would then use another
program to view and re-test the submissions.

Like many computer science departments, Warwick has started to teach
programming using the Java language. To automatically test Java software a
redesign to BOSS was required. The resulting system comprises of three
main elements – an assignment submission and testing program in the form
of a Java application, a tutor grading and assignment management application
and a web-based application which combines the two components together.
Results from executing tests and details about student records are stored
within a relational database.

One significant innovation that BOSS introduces lies with its adoption of the
JUnit testing paradigm (Beck, 2003). It was understood there were problems
associated with the simple processing of raw input and output of data
streams. By applying a method-oriented testing approach, design of
assignments could be checked. Secondly, the type of unit testing that JUnit
utilises is becoming increasingly adopted within industry and in some cases
test-driven development is also being introduced into the classroom. There is
another aspect to the BOSS system that is particularly interesting. Whilst the

assessment of assignments may be automatic, the allocation of grades
continues to lie firmly in the hands of the educator.

Up to this point, all the programs considered have been command line or
console based. JEWL (English, 2004) wishes to address assignment
submissions of greater substance by developing a system which analyses
GUI programs. One of the reasons for this being to improve student
motivation since GUI applications are often viewed like real applications, as
opposed to toys. The JEWL system is in fact a GUI tool kit where the GUI
can be replaced by a test harness which can then interpret instructions that
that program under test executes. Interactions are carried out by a simple
‘message-loop’ system.

A final issue considered is one concerning implementation and deployment.
Almost all the systems described within this section are self-contained, each
having been constructed in isolation from other systems such as institutional
wide e-learning systems or enterprise level administration and admission
tools. One exception is BOSS, which has been explicitly designed to interface
with a proprietary admissions system. Whilst BOSS can be made to interface
with other systems, it is not immediately possible without rework to elements
of the available source code.

ASAP Design, Architecture and Implementation

The ASAP project is a system which automatically assesses students
programming submissions though a user agent such as a Virtual Learning
Environment (VLE), an institution’s online educational environment, providing
access to learning materials and tools. ASAP is funded by the JISC e-
learning tools strand, an initiative to provide the UK and Higher Education
establishments with a series of freely available resources and tools. ASAP fits
into an abstract framework which is known as the e-learning framework (or
ELF).

The framework is intended to guide the construction and development of
reusable software components which can be combined together to meet the
requirements of a particular education institution. The framework comprises
of a number of bricks. Links between bricks are established through the
adoption of web-services. The intention is not to replace existing e-learning
systems in their entirely but to add a series of services which are intended to
associate to a set of perceived needs (Wilson et. al., 2004).

The ASAP project has been mapped to a number of ELF bricks. The most
significant bricks being VLE, Web Portal, Assessment, Grading and
Authentication. The definitions for these components are still emerging and
will be subject to change as an implementation is associated with each brick.
Following this idea the ASAP system adopts a modular format that utilizes
web-services. The main components of the ASAP architecture are illustrated
in Figure 1.

User Agent
(VLE)

Submission
Portlet

Gradebook

AJM Service

Storage
Service

Grading
Portlet

Figure 1. ASAP Architecture

The ASAP project fits into the e-learning framework as an assessment tool.
As other tools are developed, for example gradebooks, authentication
systems and item banks, they can be accessed together through any user
agent. Here we have discussed Blackboard and uPortal, but alternative
implementations could be created, for example using the proprietary VLE Web
CT, or the open source VLE Moodle.

The user agent block represents a VLE. A student uses his or her e-learning
account to submit a programming assignment. This submission mechanism is
represented by the submission portlet block.

The ASAP system was initially developed to use the Blackboard VLE. The
submission component was developed using the proprietary interface
provided by Blackboard. This was used to create the building block, which is
the name given to extensions to the Blackboard system. The concept of a
‘pluggable component’ was also applicable when the ASAP project targeted
an open source portal named uPortal which uses a specification known as
JSR-168.

When a student has submitted an assignment, their program is graded and
assessed by a separate software component. The grading engine has been
implemented as a web-service. The submission portlet sends the source file
to the AJM Service, an abbreviation of Automatic Java Marker (see Figure 2).
The AJM service receives the program, selects an appropriate test routine
and then runs the selected program against the submitted program. The
result of each test is collated and an XML document describing the success of
the test is then constructed. This document contains comments about the
program, a description of tests applied and a final grade. It is up to the
submission portlet to decide how this information is used when giving
feedback to the student and potentially the score may be rendered into
alphabetic grades depending upon individual requirements. Secondly, a
system-wide grade book may also be updated giving the tutor a way to view
the test results. The logic of grade recording is held within the submission

portlet and the current Blackboard implementation records only the highest
score that a student receives for a particular assignment.

Figure 2. Automated Java Marker

A number of interoperability specifications are directly relevant to the ASAP
project, specifically the content packaging (Smythe, 2002) and the question
and test (QTI) specifications (Smythe, 2005).

The content packaging specification describes how materials can be moved
from one system to another. The QTI specifications describe computer
administered assessments. It is interesting to note that the potential
application of QTI was considered by English (2002). The latest version of the
QTI specification introduces an additional element that allows the use of an
extensible responseProcessing mechanism which can be potentially used in
association with the new file upload capability.

As assessment initiatives and technologies evolve so will the standards.
Whilst it is not yet practical to implement a standards based programming
assessment system, the adoption of standards has been considered and will
continue to be considered as they change and develop.

ASAP is currently being used on a first year programming module at Kingston
University, and has been made available to approximately 140 students.

Testing using ASAP

One of the purposes of ASAP is to assist in the development of tests. When
an assessment is written, a test class must also be created for that particular
assessment. The three purposes of the test class are to evaluate the
submission against some objective criteria, provide feedback on the
performance against these criteria, and provide a single mark which can be
used to evaluate the overall performance of the submission.

As a test class has to be created for each assessment, this process needs to
be made as easy as possible, to reduce the amount of training needed for
authors new to the system to be able to develop their own tests.

In early prototypes of Automated Assessment Systems, the test class could
be of any form, provided it carried out tests on the submission and produced
some output. There was no standard format for tests.

In order to standardise the tests, a test template was created. This takes the
form of an abstract superclass that all test classes must inherit from, thus
enforcing some behavior on the test classes. The test template also
standardizes the way that submissions are compiled, and the format of the
final mark. This standardisation allows for greater reuse of tests between
years, and between different user agents who can be sure that they will
receive output in the same format each time.

The authors have much greater flexibility on two areas: the individual
objectives that are tested for, and the feedback that comes with success or
failure at each objective. In this example, the author is testing the function of
a class to estimate the value of pi. The objective can allow a range of
accuracy, rather than demanding a precise answer. The feedback could
either be very simple (objective passed, or objective failed) or more detailed
(detail the incorrect result produced in the case of failure, and provide hints to
the right answer).

Work is underway on the next stage, a test creation wizard, which will allow a
test class to be generated from a ‘model solution’ though a user interface,
without the author ever needing to directly write the code for the test class.

There of course some issues and hazards that need to be dealt with when
students are able to upload source files for testing. These fall into two
categories, ‘upload issues’ and ‘logic issues’. Both concern the safety and
security of the system, i.e. accidental and intentional mis-use.

The ‘file issues’ include scenarios such as the user trying to upload a file that
not a valid java source code file, and also files that are too big to be valid.
The files are checked to see if the file extension is ‘java’ by a JavaScript within
the web browser. The next test is during upload to the AJM server the size of
the file is tested, if it greater than 64KiB the file is rejected since java source
code files ‘should not’ be that big. At the same time the value of the
characters in the file are checked, if any of them not plain text characters the
file is also rejected since source files should not contain such characters. The

final test that is performed is a check that all the files needed for a given
exercise are submitted at the same time. If all tests are passed, the process
is allowed to continue on to the next stage of testing: the compilation and
execution of the student source code by the test harness.

Two logical issues handled in the execution stage are: the non-terminating
process, and the output of HTML tags from the process; both are described
below. The infinite loop problem is solved by allowing the students’ code a
fixed execution time, e.g. ten seconds. If it has not finished in this interval
then the test is terminated and an error reported back to the student. The
output of HTML tags from the student code is filtered by the system. The
‘angle brackets’ are replaced by HTML ‘escape codes’ so they appear
correctly on the final web page, but do not get processed as tags. The access
to the host file system is to be limited by the end user setting up the
necessary ‘sand-box’ security around the web service container.

Further Development and Conclusions

ASAP is continuing to be used at Kingston University and additional members
of staff are using the tool to develop tests. Trials have also taken place at City
University and De Montfort University.

The ASAP project is currently being expanded on by two further projects. The
Jelfad project (JISC e-learning assessment demonstrator) incorporates the
system into a larger demonstration project within the ELF, including other
JISC e-learning tools and standards such as Content Packaging and Simple
Sequencing.

The PAINTS project (Programming Assessment Integrated Training System)
directly builds on the work of ASAP by developing a production level system
that can stand entirely alone, incorporating content management, assessment
management, and an appropriate user agent. Additional tools are being
developed at a prototype level. PAINTS will also address the issue of testing
higher level program design and design patterns.

Many universities and colleges have adopted some form of Virtual Learning
Environment (VLE) to facilitate communication between educators amd
students. This represents an opportunity for the introduction of standards, to
allow collaboration between institutions, and introduction of novel teaching
and learning approaches. VLE systems may be commercial products, open
source equivalents or in-house systems. ASAP goes some way to realising a
solution that could potentially work in all three cases by using the e-learning
reference model as a basis.

Copying other students’ work is a perennial problem to educators; particularly
for computer science coursework. A programming plagiarism detection
system, entitled JPlag, has been developed at the University of Karlsruhe.
This system accepts a batch of submissions and generates a sophisticated
report detailing similarities and differences between each submission. As a

part of an on-going project, a web-service front end to the system is under
construction, allowing a VLE, the ASAP Java marking engine and the JPlag
detection system to provide the beginnings of an integrated system.

This paper has presented a system for automated assessment of
programming assignments, and explained its architecture, how it fits into the
e-learning framework, and related standards. We have described two of the
most important technical areas in the project development. Firstly, we
discussed the problem of creating test classes, and described how it has been
possible to standardise this and make it easier for the author. Secondly we
dealt with some of the potential problems of allowing submissions of unknown
code to be compiled and run.

There are interesting parallels that can be drawn between the ASAP project
and other e-learning assessment initiatives. Evidence for these can be seen
with the development of QTI and content packaging specifications, and the
decision to allow ASAP to be accessed through any VLE.

It is expected that automated assessment systems similar to the ASAP
system will increasingly adopt a greater number of e-learning interoperability
standards are they become more flexible and cater for a greater number of
different user scenarios. Automated testing is particularly relevant for ‘test-
first’ software development strategies. As the computing science and software
engineering curriculum embraces new developments in academia and
industry, testing regimes and approaches will also change.

Acknowledgements

The ASAP project has been funded by the JISC e-learning tools development
strand.

References

Beck, K. (2003). Test driven development: By example Addison-Wesley,
Boston, MA.

English, J. (2002) Experience with a computer-assisted formal programming
examination. ACM SIGCSE Bulletin, Proceedings of the 7th annual
conference on Innovation and technology in computer science education, 51-
54.

Douce, C., Livingstone, D., Orwell, J., Grindle, S and Cobb, J (in press)
Automatic Assessment of Programming Assignments, Proceedings of ALT-C
2005

Forsythe, G. E., Wirth, N. (1965) Automatic grading programs.
Communications of the ACM, 8, 5, 275-529.

Fincher, S. and Petre, M. (2004) Computer science education research.
Taylor & Francis.

Hext, J. B. and Winings, J. W. (1969) An automatic grading scheme for simple
programming exercises. Communications of the ACM, 12,5, 272-275.

Higgins, C., Hegazy, T., Symeonidis, P., and Tsintsifas, A. (2003) The
CourseMaster CBA System: Improvements over Ceilidh. Journal of Education
and Information Technologies, 8, 3, 287-304.

Hollingsworth, J. (1960) Automatic graders for programming classes,
Communications of the ACM, 3, 10, 528-529.

Horstmann, C. (2002) Big Java. John Wiley & Sons Inc.

Isaacson, P. C. and Scott, T. A. (1989) Automating the execution of student
programs. SIGCSE Bulletin, 21, 2,15-22.

Jackson, D. and Usher, M. (1997) Grading Student Programs using ASSYST.
Technical Symposium on Computer Science Education, Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education,
335-339.

Joy, M. and Luck, M. (1998) Effective electronic marking for on-line
assessment. Proceedings of the 6th annual conference on the teaching of
computing, Dublin City Univ., Ireland, 134-138.

Naur, P. (1964) Automatic grading of students' ALGOL programming. BIT 4,
177-188.

Reek, K. A. (1989) The TRY system – or – how to avoid testing student
programs. SIGCSE Bulletin, 112-116.

Rosbottom, J. (1997) Computer managed, open question, open book
assessment. SIGCSE Bulletin, 100–102.

Smythe, C., et. al. (2005) IMS Question & Test Interoperability, Version 2.0,
IMS Global Learning Consortium.

Smythe, C., et. al. (2004a) IMS Content Packaging Best Practice and
Implementation Guide v1.1.4, IMS Global Learning Consortium, Inc.

Wilson, S., Blinco, K. and Rehak, D. (2004) Service-oriented frameworks:
Modelling the infrastructure for the next generation of e-learning systems.
JISC-CETIS.

Woit, D. and Mason, D. (2003) Effectiveness of on-line assessment.
Proceedings of the 34 SIGCSE technical symposium on Computer science
education, 137-141.

th

von Matt, U. (1994) Kassandra: The automatic grading system. Technical
Report UMIACS-TR-94-59, Institute for Advanced Computer Studies,
Department of Computer Science, University of Maryland, USA.

	 A Technical Perspective on ASAP – Automated System for Assessment of Programming
	Christopher Douce, David Livingstone, James Orwell, Steve Grindle and Justin Cobb
	Kingston University
	Faculty of Technology
	Penrhyn Road
	Kingston-upon-Thames
	Surrey KT1 2EE
	Abstract
	Introduction
	Previous Work in Automated Programming Assessment Systems
	ASAP Design, Architecture and Implementation
	Testing using ASAP
	Further Development and Conclusions
	Acknowledgements
	References

