2,750 research outputs found

    Calibration of radii and masses of open clusters with a simulation

    Full text link
    Context: A recent new approach to apply a simple dynamical mass estimate of tidally limited star clusters is based on the identification of the tidal radius in a King profile with the dynamical Jacobi radius. The application to an unbiased open cluster catalogue yields significantly higher cluster masses compared to the classical methods. Aims: We quantify the bias in the mass determination as function of projection direction and cluster age by analysing a simulated star cluster. Methods: We use direct NN-body simulations of a star cluster including stellar evolution in an analytic Milky Way potential and apply a best fit to the projected number density of cluster stars. Results: We obtain significantly overestimated star cluster masses which depend strongly on the viewing direction. The overestimation is typically in the range of 10-50 percent and reaches a factor of 3.5 for young clusters. Mass segregation reduces the derived limiting radii systematically.Comment: 9 pages, 10+1 figures, accepted by Astronomy and Astrophysic

    Physical Processes in Star-Gas Systems

    Full text link
    First we present a recently developed 3D chemodynamical code for galaxy evolution from the K**2 collaboration. It follows the evolution of all components of a galaxy such as dark matter, stars, molecular clouds and diffuse interstellar matter (ISM). Dark matter and stars are treated as collisionless N-body systems. The ISM is numerically described by a smoothed particle hydrodynamics (SPH) approach for the diffuse (hot) gas and a sticky particle scheme for the (cool) molecular clouds. Physical processs such as star formation, stellar death or condensation and evaporation processes of clouds interacting with the ISM are described locally. An example application of the model to a star forming dwarf galaxy will be shown for comparison with other codes. Secondly we will discuss new kinds of exotic chemodynamical processes, as they occur in dense gas-star systems in galactic nuclei, such as non-standard ``drag''-force interactions, destructive and gas producing stellar collisions. Their implementation in 1D dynamical models of galactic nuclei is presented. Future prospects to generalize these to 3D are work in progress and will be discussed.Comment: 4 pages, 4 figures, "The 5th Workshop on Galactic Chemodynamics" - Swinburne University (9-11 July 2003). To be published in the Publications of the Astronomical Society of Australia in 2004 (B.K. Gibson and D. Kawata, eds.). Accepted version, minor changes relative to origina

    Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes

    Full text link
    The double barrier resonant tunneling diode exhibits complex spatio-temporal patterns including low-dimensional chaos when operated in an active external circuit. We demonstrate how autosynchronization by time--delayed feedback control can be used to select and stabilize specific current density patterns in a noninvasive way. We compare the efficiency of different control schemes involving feedback in either local spatial or global degrees of freedom. The numerically obtained Floquet exponents are explained by analytical results from linear stability analysis.Comment: 10 pages, 16 figure

    Coherence resonance in a network of FitzHugh-Nagumo systems: interplay of noise, time-delay and topology

    Get PDF
    We systematically investigate the phenomena of coherence resonance in time-delay coupled networks of FitzHugh-Nagumo elements in the excitable regime. Using numerical simulations, we examine the interplay of noise, time-delayed coupling and network topology in the generation of coherence resonance. In the deterministic case, we show that the delay-induced dynamics is independent of the number of nearest neighbors and the system size. In the presence of noise, we demonstrate the possibility of controlling coherence resonance by varying the time-delay and the number of nearest neighbors. For a locally coupled ring, we show that the time-delay weakens coherence resonance. For nonlocal coupling with appropriate time-delays, both enhancement and weakening of coherence resonance are possible

    Designing Interactive Secure Systems: CHI 2013 Special Interest Group

    Get PDF
    Despite a growing interest in the design and engineering of interactive secure systems, there is also a noticeable amount of fragmentation. This has led to a lack of awareness about what research is currently being carried out, and misunderstandings about how different fields can contribute to the design of usable and secure systems. By drawing interested members of the CHI community from design, user experience, engineering, and HCI Security, this SIG will take the first steps towards creating a research agenda for interactive secure system design. In the SIG, we will summarise recent initiatives to develop a research programme in interactive secure system design, network members of the CHI community with an interest in this research area, and initiate a roadmap towards addressing identified research challenges and building an interactive secure system design community

    Bifurcations in Globally Coupled Map Lattices

    Full text link
    The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius--Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The complete bifurcation behaviour of coupled tent maps near the chaotic band merging point is presented. Furthermore the time independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations.Comment: 19 pages, .dvi and postscrip

    OH-selected AGB and post-AGB stellar objects II.Blue versus red evolution off the AGB

    Get PDF
    Using objects found in a systematic survey of the galactic Plane in the 1612-MHz OH line, we discuss in detail two ``sequences'' of post-AGB evolution, a red and a blue. We argue that the red and the blue groups separate by initial mass at 4Msun, based on evolutionary-sequence turn-off colours, spectral energy distributions, outflow velocities and scaleheight. The higher-mass (blue) objects may have earlier AGB termination. The lower-mass (red) objects undergo very sudden reddening for IRAS colour R21\sim1.2; these sources must all undergo a very similar process at AGB termination. The transition colour corresponds to average initial masses of 1.7Msun. A combined IRAS-MSX colour proves a very sensitive tool to distinguish lower-mass, early post-AGB objects from sources still on the AGB and also to distinguish more evolved post-AGB objects from star-forming regions. The high-mass blue objects are the likely precursors of bipolar planetary nebulae, whereas the low-mass red objects will evolve into elliptical planetary nebulae.Comment: 12 pages, LaTex, 7 figures (1 colour), AJ (accepted

    Using remote substituents to control solution structure and anion binding in lanthanide complexes.

    Get PDF
    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery of the molecule, at a substantial distance from the binding pocket. Herein, we explore these remote substituent effects and explain the observed behaviour through discussion of the way in which remote substituents can influence and control the global structure of a molecule through their demands upon conformational space. Peripheral modifications to a binuclear lanthanide motif derived from α,α′-bis(DO3 Ayl)-m-xylene are shown to result in dramatic changes to the binding constant for isophthalate. In this system, the parent compound displays considerable conformational flexibility, yet can be assumed to bind to isophthalate through a well-defined conformer. Addition of steric bulk remote from the binding site restricts conformational mobility, giving rise to an increase in binding constant on entropic grounds as long as the ideal binding conformation is not excluded from the available range of conformers
    corecore