199 research outputs found

    The role of pontine lesion location in differentiating multiple sclerosis from vascular risk factor-related small vessel disease

    Get PDF
    Background: Differentiating multiple sclerosis (MS) from vascular risk factor (VRF)-small vessel disease (SVD) can be challenging. Objective and Methods: In order to determine whether or not pontine lesion location is a useful discriminator of MS and VRF-SVD, we classified pontine lesions on brain magnetic resonance imaging (MRI) as central or peripheral in 93 MS cases without VRF, 108 MS patients with VRF and 43 non-MS cases with VRF. Results: MS without VRF were more likely to have peripheral pons lesions (31.2%, 29/93) than non-MS with VRF (0%, 0/43) (Exp(B) = 29.8; 95% confidence interval (CI) = (1.98, 448.3); p = 0.014) but there were no significant differences regarding central pons lesions between MS without VRF (5.4%, 5/93) and non-MS with VRF patients (16.3%, 7/43) (Exp(B) = 0.89; 95% CI = (0.2, 3.94); p = 0.87). The presence of peripheral pons lesions discriminated between MS and VRF-SVD with 100% (95% CI = (91.8, 100)) specificity. The proportion of peripheral pons lesions in MS with VRF (30.5%, 33/108) was similar to that seen in MS without VRF (31.2%, 29/93, p = 0.99). Central lesions occurred in similar frequency in MS with VRF (8.3%, 9/108) and non-MS with VRF (16.3%, 7/43, p = 0.15). Conclusion: Peripheral pons lesion location is a good discriminator of MS from vascular lesions

    Neurological update: MOG antibody disease

    Get PDF
    Myelin oligodendrocyte glycoprotein (MOG) antibody disease (MOG-AD) is now recognised as a nosological entity with specific clinical and paraclinical features to aid early diagnosis. Although no age group is exempt, median age of onset is within the fourth decade of life, with optic neuritis being the most frequent presenting phenotype. Disease course can be either monophasic or relapsing, with subsequent relapses most commonly involving the optic nerve. Residual disability develops in 50–80% of patients, with transverse myelitis at onset being the most significant predictor of long-term outcome. Recent advances in MOG antibody testing offer improved sensitivity and specificity. To avoid misdiagnosis, MOG antibody testing should be undertaken in selected cases presenting clinical and paraclinical features that are felt to be in keeping with MOG-AD, using a validated cell-based assay. MRI characteristics can help in differentiating MOG-AD from other neuroinflammatory disorders, including multiple sclerosis and neuromyelitis optica. Cerebrospinal fluid oligoclonal bands are uncommon. Randomised control trials are limited, but observational open-label experience suggests a role for high-dose steroids and plasma exchange in the treatment of acute attacks, and for immunosuppressive therapies, such as steroids, oral immunosuppressants and rituximab as maintenance treatment

    Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>There exists a small subset of children with autism spectrum disorders (ASD) characterized by fluctuating behavioral symptoms and cognitive skills following immune insults. Some of these children also exhibit specific polysaccharide antibody deficiency (SPAD), resulting in frequent infection caused by encapsulated organisms, and they often require supplemental intravenous immunoglobulin (IVIG) (ASD/SPAD). This study assessed whether these ASD/SPAD children have distinct immunological findings in comparison with ASD/non-SPAD or non-ASD/SPAD children.</p> <p>Case description</p> <p>We describe 8 ASD/SPAD children with worsening behavioral symptoms/cognitive skills that are triggered by immune insults. These ASD/SPAD children exhibited delayed type food allergy (5/8), treatment-resistant seizure disorders (4/8), and chronic gastrointestinal (GI) symptoms (5/8) at high frequencies. Control subjects included ASD children without SPAD (N = 39), normal controls (N = 37), and non-ASD children with SPAD (N = 12).</p> <p>Discussion and Evaluation</p> <p>We assessed their innate and adaptive immune responses, by measuring the production of pro-inflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs) in responses to agonists of toll like receptors (TLR), stimuli of innate immunity, and T cell stimulants. Transcription profiling of PB monocytes was also assessed. ASD/SPAD PBMCs produced less proinflammatory cytokines with agonists of TLR7/8 (IL-6, IL-23), TLR2/6 (IL-6), TLR4 (IL-12p40), and without stimuli (IL-1ß, IL-6, and TNF-α) than normal controls. In addition, cytokine production of ASD/SPAD PBMCs in response to T cell mitogens (IFN-γ, IL-17, and IL-12p40) and candida antigen (Ag) (IL-10, IL-12p40) were less than normal controls. ASD/non-SPAD PBMDs revealed similar results as normal controls, while non-ASD/SPAD PBMCs revealed lower production of IL-6, IL-10 and IL-23 with a TLR4 agonist. Only common features observed between ASD/SPAD and non-ASD/SPAD children is lower IL-10 production in the absence of stimuli. Transcription profiling of PB monocytes revealed over a 2-fold up (830 and 1250) and down (653 and 1235) regulation of genes in ASD/SPAD children, as compared to normal (N = 26) and ASD/non-SPAD (N = 29) controls, respectively. Enriched gene expression of TGFBR (p < 0.005), Notch (p < 0.01), and EGFR1 (p < 0.02) pathways was found in the ASD/SPAD monocytes as compared to ASD/non-SPAD controls.</p> <p>Conclusions</p> <p>The Immunological findings in the ASD/SPAD children who exhibit fluctuating behavioral symptoms and cognitive skills cannot be solely attributed to SPAD. Instead, these findings may be more specific for ASD/SPAD children with the above-described clinical characteristics, indicating a possible role of these immune abnormalities in their neuropsychiatric symptoms.</p

    ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    Get PDF
    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases

    Immune Modulating Peptides for the Treatment and Suppression of Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a neurodegenerative disease in which the immune system recognizes proteins of the myelin sheath as antigenic, thus initiating an inflammatory reaction in the central nervous system. This leads to demyelination of the axons, breakdown of the blood-brain barrier, and lesion formation. Current therapies for the treatment of MS are generally non-specific and weaken the global immune system, thus making the individual susceptible to opportunistic infections. Antigenic peptides and their derivatives are becoming more prevalent for investigation as therapeutic agents for MS because they possess immune-specific characteristics. In addition, other peptides that target vital components of the inflammatory immune response have also been developed. Therefore, the objectives of this review are to (a) summarize the immunological basis for the development of MS, (b) discuss specific and non-specific peptides tested in EAE and in humans, and (c) briefly address some problems and potential solutions with these novel therapies

    Pediatric multiple sclerosis: update on diagnostic criteria, imaging, histopathology and treatment choices

    Get PDF
    Pediatric multiple sclerosis (MS) represents less than 5% of the MS population, but patients with pediatric-onset disease reach permanent disability at a younger age than adult onset patients. Accurate diagnosis at presentation and optimal long-term treatment is vital to mitigate ongoing neuroinflammation and irreversible neurodegeneration. However, it may be difficult to early differentiate pediatric MS from acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica spectrum disorders (NMOSD) as they often have atypical presentation that differs from that of adult-onset MS. The purpose of this review is to summarize the updated views on diagnostic criteria, imaging, histopathology and treatment choices

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF
    corecore