13 research outputs found

    Contrasting Phenomenology of NMR Shifts in Cuprate Superconductors

    Full text link
    Nuclear magnetic resonance (NMR) shifts, if stripped off their uncertainties, must hold key information about the electronic fluid in the cuprates. The early shift interpretation that favored a single-fluid scenario will be reviewed, as well as recent experiments that reported its failure. Thereafter, based on literature shift data for planar Cu a contrasting shift phenomenology for cuprate superconductors is developed, which is very different from the early view while being in agreement with all published data. For example, it will be shown that the hitherto used hyperfine scenario is inadequate as a large isotropic shift component is discovered. Furthermore, the changes of the temperature dependences of the shifts above and below the superconducting transitions temperature proceed according to a few rules that were not discussed before. It appears that there can be substantial spin shift at the lowest temperature if the magnetic field lies in the CuO2_2 plane, which points to a localization of spin in the 3d(x2−y2)3d(x^2-y^2) orbital. A simple model is presented based on the most fundamental findings. The analysis must have new consequences for theory of the cuprates

    How pressure enhances the critical temperature of superconductivity in YBa2_{2}Cu3_{3}O6+y_{6+y}

    Get PDF
    High-temperature superconducting cuprates respond to doping with a dome-like dependence of their critical temperature (Tc). But the family-specific maximum Tc can be surpassed by application of pressure, a compelling observation known for decades. We investigate the phenomenon with high-pressure anvil cell NMR and measure the charge content at planar Cu and O, and with it the doping of the ubiquitous CuO2 plane with atomic-scale resolution. We find that pressure increases the overall hole doping, as widely assumed, but when it enhances Tc above what can be achieved by doping, pressure leads to a hole redistribution favoring planar O. This is similar to the observation that the family-specific maximum Tc is higher for materials where the hole content at planar O is higher at the expense of that at planar Cu. The latter reflects dependence of the maximum Tc on the Cu–O bond covalence and the charge-transfer gap. The results presented here indicate that the pressure-induced enhancement of the maximum Tc points to the same mechanism

    Radical-induced hetero-nuclear mixing and low-field 13^{13}C relaxation in solid pyruvic acid

    Get PDF
    Radicals serve as a source of polarization in dynamic nuclear polarization, but may also act as polarization sink, in particular at low field. Additionally, if the couplings between the electron spins and different nuclear reservoirs are stronger than any of the reservoirs’ couplings to the lattice, radicals can mediate hetero-nuclear polarization transfer. Here, we report radical-enhanced 13^{13}C relaxation in pyruvic acid doped with trityl. Up to 40 K, we find a linear carbon T1T_{1} field dependence between 5 mT and 2 T. We model the dependence quantitatively, and find that the presence of trityl accelerates direct hetero-nuclear polarization transfer at low fields, while at higher fields 13^{13}C relaxation is diffusion limited. Measurements of hetero-nuclear polarization transfer up to 600 mT confirm the predicted radical-mediated proton–carbon mixing

    Radical-Induced Low-Field 1H Relaxation in Solid Pyruvic Acid Doped with Trityl-OX063

    Get PDF
    In dynamic nuclear polarization (DNP), radicals such as trityl provide a source for high nuclear spin polarization. Conversely, during the low-field transfer of hyperpolarized solids, the radicals’ dipolar or Non-Zeeman reservoir may act as a powerful nuclear polarization sink. Here, we report the low-temperature proton spin relaxation in pyruvic acid doped with trityl, for fields from 5 mT to 2 T. We estimate the heat capacity of the radical Non-Zeeman reservoir experimentally and show that a recent formalism by Wenckebach yields a parameter-free, yet quantitative model for the entire field range

    NMR of Electron-Doped High-Temperature Superconductor Pr(2-x)Ce(x)CuO(4)

    Get PDF
    Diese Arbeit befasst sich mit der Charakterisierung einer verhältnismäßig wenig beforschten Untergruppe der hochtemperatur-supraleitenden Kuprate (HTSCs-high-temperature superconducting cuprates), den elektronendotierten HTSCs, vermittels kernmagnetischer Resonanz (NMR-nuclear magnetic resonance). Die Untersuchungen umfassen 63Cu und 17O NMR an ausgerichteten Pulverproben und Einkristallen von Pr2−xCexCuO4 (x = 0, 0.05, 0.10, 0.15, 0.20) sowie auch Nd2−xCexCuO4 (x = 0, 0.13) in externen Magnetfeldern von 2.35 bis 17.6 T und Temperaturen zwischen 8 und 400 K. Durch eine Vielzahl von Experimenten wird die erste eindeutige spektrale Analyse für beide Nuklide vorgenommen. Es wird gezeigt, dass die indirekte, homonukleare Kopplung, wie sie beim Hahn-Echo-Zerfall von planarem 63,65Cu in lochdotierten HTSCs und auch im undotierten Pr2CuO4 gefunden wird, durch Elektronendotierung weitestgehend unterdrückt wird. Eine Analyse der Quadrupolaufspaltungen zeigt, dass nicht nur die lokale Verteilung der dotierten Elektronen und Löcher in den CuO2-Schichten quantitativ gemessen werden kann, sondern, dass auch Unterschiede in den 63Cu und 17O Aufspaltungen verschiedener undotierter Kuprate auf eine variable Ladungsverteilung zurückzuführen sind. Somit ist eine quantitative Messung der lokalen Ladungsverteilung in der CuO2 -Schicht der HTSCs möglich, welche ein neues, differenziertes Bild der unterschiedlichen Materialien ergibt
    corecore